18733: Applied Cryptography Recitation

Discrete Probability Theory Review

Gihyuk Ko January 20, 2017

Carnegiel Mellon University

Discrete Probability Theory and Cryptography

- **Q.** What is Discrete Probability Theory?
 - **Discrete** finite, countable sets
 - Probability likelyhood, chance of event
 - Theory formal representation, used for proof
- **A.** A formal representation which deals with the probability of events that occur in countable sample spaces.
- **Q.** Why are we using it to study Cryptography?
- **A.** We want to *prove* that an adversary who tries to break a certain protocol has only miniscule('negligible') *probability of succeeding* (and the protocol usually deals with *finite* number of events).

Probability Distribution

Sample Space U

```
U is a finite set, i.e. |U| \in \mathbb{N}
ex) coin flips U = \{heads, tails\}, |U| = 2
ex) dice roll U = \{1, 2, 3, 4, 5, 6\}, |U| = 6
ex) n-bit random number U = \{0, 1\}^n, |U| = 2^n
```

Probability Distribution $P: U \rightarrow [0, 1]$

P is a function from U to [0,1] s.t.
$$\sum_{x \in U} P(x) = 1$$

Uniform Distribution

A probability distribution P s.t. $\forall x \in U.P(x) = \frac{1}{|U|}$ i.e., every elements in U have same probability mass

Events

Event $A \subseteq U$

An event A is a subset of sample space U.

Probability of event A:

$$Pr[A] = \sum_{a \in A} P(a)$$

Note the difference between $Pr[\cdot]$ and $P(\cdot)$

- More formally, $Pr[\cdot]: 2^U \rightarrow [0,1]$
- $P(\cdot)$ is (normally) called a probability mass function

ex) odd-numbered fair dice roll:

$$U = \{1, 2, 3, 4, 5, 6\}, A = \{1, 3, 5\}, P(i) = \frac{1}{6} \text{ for } \forall i$$

 $Pr[A] = \frac{1}{2}$

Example: Bernoulli(binomial) Distribution

Assume flipping n biased coins where each coins have probability of turning out head p (0 $\leq p \leq$ 1).

- Sample space $U = \{0,1\}^n$
- **Probability distribution** P(x) for x which have k ones

$$P(x) = p^k (1-p)^{n-k}$$

Event $A_k = \{a | \text{ there are } k \text{ ones in } a\}$

$$P[A_k] = \binom{n}{k} p^k (1-p)^{n-k}$$

Union Bound

For events A_1 and A_2 :

$$Pr[A_1 \cup A_2] \le Pr[A_1] + Pr[A_2]$$

The probability of the union of two events cannot exceed their sum Useful when it is difficult to calculate exact probability

5

Random Variable

A **Random Variable** *X* is a function $X: U \rightarrow V$

ex)
$$X : \{0,1\}^n \to \{0,1\}, X(u) = lsb(u) \forall u \in \{0,1\}^n$$

X induces a probability distribution on V from P'(v) := Pr[X = v]

- 1. $(X = v) := \{u | X(u) = v\}$ Event
- 2. $0 \le Pr[X = v] \le 1$ Probability
- 3. $P': V \rightarrow [0,1]$ Distribution

$$P'(v) := Pr[X = v]$$
 is a probability distribution on V !

X is called a Uniform Random Variable if the induced distribution is uniform

ex) Let
$$r$$
 be the identity function sampled uniformly over U : $r(u) = u$ $r \leftarrow_R U, \forall a \in U : Pr[r = a] = \frac{1}{|U|}$

Independence

Events A and B are independent if

$$Pr[A \cap B] = Pr[A]Pr[B]$$

Random variables $X: U \rightarrow V$, $Y: U \rightarrow W$ are **independent** if

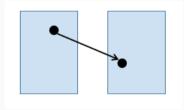
$$\forall v \in V, \forall w \in W.Pr[X = v \cap Y = w] = Pr[X = v]Pr[Y = w]$$

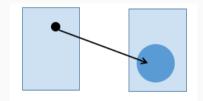
Randomized Algorithms

Deterministic Algorithm: $y \leftarrow A(m)$

Randomized Algorithm: $y \leftarrow A(m, r), r \leftarrow_R \{0, 1\}^n$

r is given 'implicitly' as an output of a uniform random variable





Idea: Think of the input as a message and random factor as an "encryption key"

XOR: eXclusive OR

Χ	Y	$X \oplus Y$
0	0	0
0	1	1
1	0	1
1	1	0

Table 1: Exclusive Or Truth Table

XOR: eXclusive OR (cont'd)

Let X, Y random variable over $\{0,1\}^n$. If X is a uniform random variable independent to Y, then $Z = X \oplus Y$ is uniform over $\{0,1\}^n$

Intuition: take something predictable, XOR it with something uniform, the result is completely uniform.

proof(n=1). Let
$$Pr[Y = 0] = p, Pr[Y = 1] = 1 - p$$

$$\begin{array}{c|cccccc}
X & Y & X \oplus Y & Pr[\cdot] \\
\hline
0 & 0 & 0 & \frac{p}{2} \\
0 & 1 & 1 & \frac{1-p}{2} \\
1 & 0 & 1 & \frac{p}{2} \\
1 & 1 & 0 & \frac{1-p}{2} \\
\end{array}$$

from the given table, we have $Pr[Z=0]=Pr[Z=1]=\frac{1}{2}$. \square ... how can we prove when $n\geq 2$?

Birthday Paradox

In a set of n randomly chosen people, what is the probability of finding a pair with same birthday? – Birthday Problem

Let $r_1, \ldots, r_n \in U$ be i.i.d.(independent and identically distributed) random variables

Theorem: when $n = 1.2 * \sqrt{|U|}$, then $Pr[r_i = r_j] \ge 0.5$

ex) $U = \{0, 1\}^{128}$, after sampling about 2^{64} , we will likely find a collision.

Application: Keys must be changed more quickly than we might expect in some applications, and "collision resistant" functions must be made sufficiently strong

