Introduction to
Elliptic Curve Cryptography

Elliptic Curve Cryptography

* Public Key Cryptosystem

* Duality between Elliptic Curve Cryptography and
Discrete Log Based Cryptography

— Groups / Number Theory Basis
— Additive group based on curves

* What is the point?

— Less efficient attacks exist so we can use smaller keys
than discrete log / RSA based cryptography

COmpUting DIOg in (Zp)* (n-bit prime p)

Best known algorithm (GNFS):
runtime exp(O(/n))

Elliptic Curve
cipher key size modulus size group size
80 bits 1024 bits 160 bits
128 bits 3072 bits 256 bits
256 bits (AES) 15360 bits 512 bits

As a result: slow transition away from (mod p) to
elliptic curves

Discrete Logs

Let p = 2q + 1 where p, g are large primes

Ly is the group of integers modulo p

|Z,| = 24

Gy = QR(Zp) is the quadratic residue subgroup of Z,,
|QR(Zp)| = ¢, subgroup of prime order

Every element g € G, is a generator, pick a random one

Pick secret x, compute g*mod p
Public: (p,q,g,9*) Secret: x

Discrete Log Assumption: Given Public it is hard to find Secret

Outline

 Elliptic curves over reals

* Elliptic curves over Z,,
* ECDH and ECDSA

Elliptic Curves

* Consider the following equation:
yi=x3+ax+b
* Idea: we pick (a, b) and form a group which is
a set containing all of the points that satisfy
the equation

e This group will be defined with a very special
addition operation which introduces an
additional imaginary point

Example

Not all curves are valid elliptic curves

Left: y2 = x> has a “cusp”
Right: y%2 = x3 — 3x + 2 has a “self intersection”

In general we require: 4a> + 27b% # 0

Observation: curves are symmetric about the pointy = 0

Elliptic Curves as a Group

Groups are sets defined over some operation with some structure /
properties

G ={(x,y): y*> = x3 + ax + b}

Define an operation denoted by ‘4’ such that:

* Ifpy,p, € G, p; +p, € G (Closure)

* (p1+p2) +p3 =p; + (p2 + p3) (Associative)
e 30 s.t. Vp p+ 0 =0+ p = p (Identity)

« Vpadp~ls.t.p+pt =0/ Inverse)

Curves will form an abelian group
* p1+py =py +p1 (Communitive)

The Group Operation

Not typical point-wise addition!

What is this O element?
— y% = x3 + ax + b does not include (0, 0) if b # 0

How do we know inverses exist if we don’t know what the O
element is?

How do we maintain closure?

— (x,y) + (x,y) = (2x, 2y) for typical pointwise addition
which in general does not lie on the curve

The Group Operation

Let P, Q, R € G, such that a line passes through all of them, then
group operation is:
P+Q+R=0

This is strange, we have a relationship between points that lie along
but no clear notion of traditional addition

We can use the relationship to define a more traditional form of
addition:

P+0Q=-R

The Group Operation

P+0Q=-R

R = (xr,), —R=(p—y)
What happens if we want to compute
— R+ R?
* What third point on the curve lies
on the line defined by (R, —R)?

We say this is the point defined at
infinity, we denote it by O, and it is the
additive identity

~R+R=0

Adjust our definition of the group:
G ={(x,y): y> =x3+ ax + b} U {0}

The Group Operation (Geometric)

« Given G = {(x,y): y?> = x3+ ax + b} U {0}, calculate P + Q

— Geometrically, figure out the third point R such that a line goes through P, Q, R and then
setP+Q =—-R

 What could possibly go wrong?

— PorQcouldbeO
0 Is the identity under the group operation,soP +0=0+P =P

— P=-Q
This is the case of =R + R = 0 which was defined by the vertical line
- P=Q

Imagine tangent to P, use that to find R. P + P = —R describes the line tangent to P that intersects at R
— There is no 3™ point

This occurs when the line is tangent to exactly one of P or Q. Suppose the line is tangent to P, then from before
we have P + P = —(Q which givesus P + Q = —P

If line is tangent to Q, then Q + Q = —P which would giveus P + Q = —Q

Algebraic Solution

e LetP # Q, line defined by P, Q has slope

Yp — Yo
xP—xQ

m =

* Intersection with point R = (Xg, VR):
— xgp=m*—xp — xg

— Yyr=ypt+mlxg —xp) =yq + m(XR _XQ)

* How would we check that this is correct?
— Check if (xg, V) € G, if it is then correct with high probability

Multiplication

We have defined addition, so now we can define multiplication
n*P=P+P+ ..+ P (n—times)
Inefficient for multiplying by large numbers

Use doubling algorithm, analogue of repeated squaring algorithm for
exponentiation

Calculate 19 (6 Additions):
— A=1+1=2

— B=A+A=2+2=4

— C=B+B=4+4=8

— D=C+C=16

— 19=D+A+1

Back to Discrete Logs

In the discrete log setting, exponentiation was easy, but logs were hard

— g* —Easy, log, g* —Hard

In the elliptic curve setting, multiplication is easy but division is hard
— We still call division “logarithm” even though its really division here

We used the asymmetry of these operations in the discrete log setting to
do key exchange / encryption, can do a similar thing with elliptic curves

Fields

* Afieldis a set [F with two operations (+, X)
that has the following properties:
— IF is an abelian group under +

— The non-zero elements of IF are an abelian group
under X

—a(b+c) =ab+ ac Va,b, c € F (Distributive)

Elliptic Curves Over a Field

Note: Z,, (+,X) is a field when n is prime
Refine the definition of the curve group again:

- (x,v) € (Fp)?: y? = x3 + ax + b (mod p) U (0)
B A4a3 + 27b? # 0 (mod p)

Curves are now defined only at discrete points and not over the smooth
lines that we had before

Elliptic Curves Over a Field

18 9 .
16
80
14
12 64
10
48
8
6 32
4
16
2
0 0 !
0 2 4 6 8 10 1214 16 18 0 16 32 48 64 8 9
1265— T 486 =g
108 405
90
324
72
243
54
162
36
18 81 ‘
0 0 —

0 18 36 54 72 90 108 126 0 81 162 243 324 405 486

y? = x3 —7x + 10 (mod p) where p = 19,97,127,487

Operation for Curves Over a Field

120
100
80 .
60
40

20
P

0

0 20 40 60 80 100 120

Curve y? = x3 — x + 3 (mod 127), P = (16,20), Q = (41,120)

Operation for Curves Over a Field

The addition operation that we defined before works exactly the same on
curves defined over a field

All of the special cases are handled exactly the same as before

Intersection with point R = (xg, yr) still computed as:

— Xg =m® —xp — xogmod p

— Yr =yp t m(xg —xp)modp =yq + m(xR — XQ) mod p

Order of Elliptic Curve Group

* # of unique points in the group

— Could simply try and count them, but there are
too many for this to be possible

e Efficient algorithms for computing this exist

Subgroups of Elliptic Curve Groups

In the discrete log setting, we selected a generator g and computed
{g° g%, ..} mod p

This group generated by the generator had an order that divided the order
of the parent group by Lagrange’s Theorem

In Elliptic Curves we can select a point P which is like a generator and
compute {OP, P,2P, 3P, ...} mod p, we call this a Base Point

This operation will also generate a cyclic subgroup of the Elliptic curve
group whose order divides the order of the parent group

Subgroups of Elliptic Curve Groups

Suppose we pick a point, P, how can we find the order of the subgroup
generated by P?

Let N be the order of the parent group

Let N = pflpgz ... be the prime factorization of N
Let n be the order of the subgroup

Idea: take all divisors of N, given by the prime factorization, and sort them
smallest to largest, call them n. The order of the subgroup is the smallest n
such that nP = 0.

Finding Base Point With High Order

We will want to find a base point that generates a subgroup with prime
order that is as high as possible

Let h = % we will call h the cofactor of the subgroup

Let n be the largest prime factor in the prime factorization of N

NP = 0 because N is an integer multiple of any point P
n(hP) = 0 by re-writing N = nh

This tells us that the point AP = G has order n unless G = 0
G is a generator of a cyclic subgroup of prime order n

ECDH — Elliptic Curve Diffie-Hellman

e Regular Diffie-Hellman:
— Alice has secret a and computes g
— Bob has secret b and computes g°
— They exchange and compute g“b

— Key insight: it is hard for an adversary to compute gab from ga,gb

e ECDH Setting, Public Parameters: (p,a, b, G,n, h)
— p =large prime
— (a,b) = coefficients in y* =x3+ax+b
— G = base point that generates subgroup of large prime order
— n = order of the subgroup
— h = cofactor of the subgroup

ECDH — Elliptic Curve Diffie-Hellman

Alice: dA R an HA = dAG
Bob: dB R ZTU HB = dBG

Alice -> Bob: H,
Bob -> Alice: Hp

Alice: dAHB = dAdBG
Bob: dBHA = dBdAG

Say S = d,dgG is the shared secret, can use it to derive a symmetric key

ECDSA — Elliptic Curve Digital Signature
Algorithm

* Public Information: (p, a, b, G,n, h)
* Alice’s Private Key: d4
* Alice’s PublicKey: Hy = d,G

* Alice signs a message m € Z, by performing the following:
— k —p 7,
— P =kG = (xp,yp)
— r =xpmodn, ifr = 0 start over
— s =k Y(m +rd,) modn, if s = 0 start over
— Output signature (s, 1)

ECDSA — Elliptic Curve Digital Signature
Algorithm

* Bob can verify a message signed by performing the

following:

— Bob gets (m,s,r,Hy)

1 1

— Calculate u;y = s " m modn, u, = s "r modn
— Calculate P = u41G + u,Hy

— Validifand only if r = xp mod n

ECDSA — Elliptic Curve Digital Signature
Algorithm

 Check that the algorithm is correct:
— P=uG+u,Hy =u G+ uydyG = (uy +u,dy)G
— P=(G"m+srd)G =s1(m+1rdy)G
—s=k'(m+rdy) > k=s"1(m+rdy)

— P =s"1(m +1rd,)G = kG —Thus the signature will verify correctly

Acknowledgments

 Many slides created by Kyle Soska (TA for
18733 in Spring 2016)

Pairing Based Cryptography

Computational Diffie-Hellman
— Given g, g%, g” compute g%?
Decisional Diffie-Hellman

— Given g, g%, g°, cant tell g#° apart from random element g€ for
random ¢

Let G4, G5, G be groups of prime order g, then a bilinear pairing denoted
e is an operation that maps from G; X G, — Gt such that

Va,b € F,,VP € G1,YQ € G, e(aP,bQ) = e(P, Q) # 1

Idea: We can use pairing based cryptography to create a situation where
Computational Diffie-Hellman is hard, but Decisional Diffie-Hellman is easy

Pairing Based Cryptography

Computational Diffie-Hellman
— Given g, g%, g” compute g%?
Decisional Diffie-Hellman

— Given g, g%, g°, cant tell g#° apart from random element g€ for
random ¢

Suppose an adversary has g%, g?, g%, where g7 is randomly

either g#? or g€ for c random. How can he check which one
he has?

— e(g% g") = e(g,9)® = e(g,9%)
— Adversary computes e(g, g%) =? e(ga,gb)

Pairing Based Signatures (Boneh et al.)

* X <Rl

* Private Key: x, Public Key: g*

* Sign message m by hashing it yielding h = H(m) and signing the hash as
o = h*

« Verify (o6, m)ase(o,g) =?e(H(m), g*)
- 8(0', g) — e(hxi g) = e(H(m)x' g) — e(H(m)r g)x — e(H(m), gx)

Twists Of Elliptic Curves

Suppose you have an elliptic curve E[p] over some field F
A twist of E[p] another elliptic curve over a field extension of [F

A twist of E[p] will be isomorphic to E[p], namely it will have the same
order, and there is a 1-1 onto mapping between them

Other Notes

* Weil Pairing is a well studied paring where the
groups G are elliptic curves

* There are many standardized elliptic curve groups
—y% + xy = x3 + ax? + 1 over F,m, m = prime and
a=0orl
* Koblitz Curves, very fast addition and multiplication
— x>+ y*=1+dx*y? whered =0or1

e Edwards Curves, point addition is the same in all cases, and
reasonably fast

