
Introduction to
Elliptic Curve Cryptography

Anupam Datta

18-733



Elliptic Curve Cryptography

• Public Key Cryptosystem

• Duality between Elliptic Curve Cryptography and 
Discrete Log Based Cryptography
– Groups / Number Theory Basis

– Additive group based on curves

• What is the point?
– Less efficient attacks exist so we can use smaller keys 

than discrete log / RSA based cryptography



Computing Dlog in (Zp)*
(n-bit prime p) 

Best known algorithm (GNFS): 
run time     exp(              )

cipher key size modulus size
80 bits 1024 bits
128 bits 3072 bits
256 bits (AES) 15360 bits 

As a result:    slow transition away from (mod p) to 
elliptic curves

Elliptic Curve
group size

160 bits

256 bits

512 bits



Discrete Logs

• Let 𝑝 = 2𝑞 + 1 where 𝑝, 𝑞 are large primes

• ℤ𝑝 is the group of integers modulo 𝑝

• ℤ𝑝 = 2𝑞

• 𝐺𝑞 = 𝑄𝑅 ℤ𝑝 is the quadratic residue subgroup of ℤ𝑝

• 𝑄𝑅 ℤ𝑝 = 𝑞, subgroup of prime order

• Every element 𝑔 ∈ 𝐺𝑞 is a generator, pick a random one

• Pick secret 𝑥, compute 𝑔𝑥𝑚𝑜𝑑 𝑝

• Public: 𝑝, 𝑞, 𝑔, 𝑔𝑥 Secret: 𝑥

• Discrete Log Assumption: Given Public it is hard to find Secret



Outline

• Elliptic curves over reals

• Elliptic curves over 𝑍𝑝

• ECDH and ECDSA



Elliptic Curves

• Consider the following equation:
𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏

• Idea: we pick (𝑎, 𝑏) and form a group which is 
a set containing all of the points that satisfy 
the equation

• This group will be defined with a very special 
addition operation which introduces an 
additional imaginary point



Example



Not all curves are valid elliptic curves

• Left: 𝑦2 = 𝑥3 has a “cusp”

• Right: 𝑦2 = 𝑥3 − 3𝑥 + 2 has a “self intersection”

• In general we require: 4𝑎3 + 27𝑏2 ≠ 0

• Observation: curves are symmetric about the point 𝑦 = 0



Elliptic Curves as a Group

• Groups are sets defined over some operation with some structure / 
properties

• 𝐺 = 𝑥, 𝑦 : 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏

• Define an operation denoted by ‘+’ such that:

• If 𝑝1, 𝑝2 ∈ 𝐺, 𝑝1 + 𝑝2 ∈ 𝐺 (Closure)

• 𝑝1 + 𝑝2 + 𝑝3 = 𝑝1 + (𝑝2 + 𝑝3) (Associative)

• ∃0 𝑠. 𝑡. ∀𝑝 𝑝 + 0 = 0 + 𝑝 = 𝑝 (Identity)

• ∀𝑝 ∃𝑝−1 𝑠. 𝑡. 𝑝 + 𝑝−1 = 0 (Inverse)

– Curves will form an abelian group

• 𝑝1 + 𝑝2 = 𝑝2 + 𝑝1 (Communitive)



The Group Operation

• Not typical point-wise addition!

• What is this 0 element?

– 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 does not include (0, 0) if 𝑏 ≠ 0

• How do we know inverses exist if we don’t know what the 0 
element is?

• How do we maintain closure?

– 𝑥, 𝑦 + 𝑥, 𝑦 = 2𝑥, 2𝑦 for typical pointwise addition 
which in general does not lie on the curve



The Group Operation

• Let 𝑃, 𝑄, 𝑅 ∈ 𝐺, such that a line passes through all of them, then 
group operation is: 

𝑃 + 𝑄 + 𝑅 = 0

• This is strange, we have a relationship between points that lie along 
but no clear notion of traditional addition

• We can use the relationship to define a more traditional form of 
addition:

𝑃 + 𝑄 = −𝑅



The Group Operation
• 𝑃 + 𝑄 = −𝑅

• 𝑅 = 𝑥𝑟 , 𝑦𝑟 , −𝑅 = 𝑥𝑟 , −𝑦𝑟
• What happens if we want to compute 

− 𝑅 + 𝑅?
• What third point on the curve lies 

on the line defined by (𝑅, −𝑅)?

• We say this is the point defined at 
infinity, we denote it by 0, and it is the 
additive identity

• −𝑅 + 𝑅 = 0

• Adjust our definition of the group:
• 𝐺 = 𝑥, 𝑦 : 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 ∪ {0}



The Group Operation (Geometric)

• Given 𝐺 = 𝑥, 𝑦 : 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 ∪ {0}, calculate 𝑃 + 𝑄
– Geometrically, figure out the third point 𝑅 such that a line goes through 𝑃,𝑄, 𝑅 and then 

set P + 𝑄 = −𝑅

• What could possibly go wrong?
– P or Q could be 0

• 0 Is the identity under the group operation, so 𝑃 + 0 = 0 + 𝑃 = 𝑃

– P = -Q
• This is the case of −𝑅 + 𝑅 = 0 which was defined by the vertical line

– P = Q
• Imagine tangent to P, use that to find R.  𝑃 + 𝑃 = −𝑅 describes the line tangent to 𝑃 that intersects at 𝑅

– There is no 3rd point
• This occurs when the line is tangent to exactly one of 𝑃 or 𝑄. Suppose the line is tangent to 𝑃, then from before 

we have 𝑃 + 𝑃 = −𝑄 which gives us 𝑃 + 𝑄 = −𝑃

• If line is tangent to 𝑄, then 𝑄 + 𝑄 = −𝑃 which would give us 𝑃 + 𝑄 = −𝑄



Algebraic Solution

• Let 𝑃 ≠ 𝑄, line defined by 𝑃, 𝑄 has slope

𝑚 =
𝑦𝑃 − 𝑦𝑄

𝑥𝑃 − 𝑥𝑄

• Intersection with point 𝑅 = xR, yR :

– 𝑥𝑅 = 𝑚2 − 𝑥𝑃 − 𝑥𝑄

– 𝑦𝑅 = 𝑦𝑃 +𝑚 𝑥𝑅 − 𝑥𝑃 = yQ +m xR − xQ

• How would we check that this is correct?
– Check if 𝑥𝑅, 𝑦𝑅 ∈ 𝐺, if it is then correct with high probability



Multiplication

• We have defined addition, so now we can define multiplication

• 𝑛 ∗ 𝑃 = 𝑃 + 𝑃 + …+ 𝑃 𝑛 − 𝑡𝑖𝑚𝑒𝑠

• Inefficient for multiplying by large numbers

• Use doubling algorithm, analogue of repeated squaring algorithm for 
exponentiation

• Calculate 19 (6 Additions):
– A = 1+1 = 2

– B = A + A = 2 + 2 = 4

– C = B + B = 4 + 4 = 8

– D = C + C = 16

– 19 = D + A + 1



Back to Discrete Logs

• In the discrete log setting, exponentiation was easy, but logs were hard

– 𝑔𝑥 − Easy,     log𝑔 𝑔
𝑥 − Hard  

• In the elliptic curve setting, multiplication is easy but division is hard

– We still call division “logarithm” even though its really division here

• We used the asymmetry of these operations in the discrete log setting to 
do key exchange / encryption, can do a similar thing with elliptic curves



Fields

• A field is a set 𝔽 with two operations (+,×) 
that has the following properties:

– 𝔽 is an abelian group under +

– The non-zero elements of 𝔽 are an abelian group 
under ×

– 𝑎 𝑏 + 𝑐 = 𝑎𝑏 + 𝑎𝑐 ∀𝑎, 𝑏, 𝑐 ∈ 𝔽 (Distributive)



Elliptic Curves Over a Field

• Note: ℤ𝑛
∗ (+,×) is a field when 𝑛 is prime

• Refine the definition of the curve group again:

• 𝐺 =
𝑥, 𝑦 ∈ 𝔽𝑃

2: 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 𝑚𝑜𝑑 𝑝

4𝑎3ٿ + 27𝑏2 ≠ 0 𝑚𝑜𝑑 𝑝
∪ {0}

• Curves are now defined only at discrete points and not over the smooth 
lines that we had before



Elliptic Curves Over a Field

𝑦2 = 𝑥3 − 7𝑥 + 10 𝑚𝑜𝑑 𝑝 where 𝑝 = 19, 97, 127, 487



Operation for Curves Over a Field

Curve 𝑦2 = 𝑥3 − 𝑥 + 3 (𝑚𝑜𝑑 127), 𝑃 = 16, 20 , 𝑄 = (41, 120)



Operation for Curves Over a Field

• The addition operation that we defined before works exactly the same on 
curves defined over a field

• All of the special cases are handled exactly the same as before

• Intersection with point 𝑅 = xR, yR still computed as:

– 𝑥𝑅 = 𝑚2 − 𝑥𝑃 − 𝑥𝑄𝑚𝑜𝑑 𝑝

– 𝑦𝑅 = 𝑦𝑃 +𝑚 𝑥𝑅 − 𝑥𝑃 𝑚𝑜𝑑 𝑝 = yQ +m xR − xQ 𝑚𝑜𝑑 𝑝



Order of Elliptic Curve Group

• # of unique points in the group

– Could simply try and count them, but there are 
too many for this to be possible

• Efficient algorithms for computing this exist



Subgroups of Elliptic Curve Groups

• In the discrete log setting, we selected a generator 𝑔 and computed 
𝑔0, 𝑔1, … 𝑚𝑜𝑑 𝑝

• This group generated by the generator had an order that divided the order 
of the parent group by Lagrange’s Theorem

• In Elliptic Curves we can select a point P which is like a generator and 
compute 0𝑃, 𝑃, 2𝑃, 3𝑃,… 𝑚𝑜𝑑 𝑝, we call this a Base Point

• This operation will also generate a cyclic subgroup of the Elliptic curve 
group whose order divides the order of the parent group



Subgroups of Elliptic Curve Groups

• Suppose we pick a point, 𝑃, how can we find the order of the subgroup 
generated by 𝑃?

• Let N be the order of the parent group

• Let 𝑁 = 𝑝1
𝑘1𝑝2

𝑘2 … be the prime factorization of N

• Let n be the order of the subgroup

• Idea: take all divisors of N, given by the prime factorization, and sort them 
smallest to largest, call them n. The order of the subgroup is the smallest n 
such that nP = 0.



Finding Base Point With High Order

• We will want to find a base point that generates a subgroup with prime 
order that is as high as possible

• Let ℎ =
𝑁

𝑛
we will call ℎ the cofactor of the subgroup

• Let 𝑛 be the largest prime factor in the prime factorization of 𝑁

• 𝑁𝑃 = 0 because 𝑁 is an integer multiple of any point 𝑃

• 𝑛 ℎ𝑃 = 0 by re-writing 𝑁 = 𝑛ℎ

• This tells us that the point ℎ𝑃 = 𝐺 has order 𝑛 unless 𝐺 = 0

• 𝐺 is a generator of a cyclic subgroup of prime order 𝑛



ECDH – Elliptic Curve Diffie-Hellman

• Regular Diffie-Hellman:
– Alice has secret 𝑎 and computes 𝑔𝑎

– Bob has secret 𝑏 and computes 𝑔𝑏

– They exchange and compute 𝑔𝑎𝑏

– Key insight: it is hard for an adversary to compute 𝑔𝑎𝑏 from 𝑔𝑎, 𝑔𝑏

• ECDH Setting, Public Parameters: 𝑝, 𝑎, 𝑏, 𝐺, 𝑛, ℎ

– 𝑝 = large prime

– (𝑎, 𝑏) = coefficients in 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏

– 𝐺 = base point that generates subgroup of large prime order

– 𝑛 = order of the subgroup

– ℎ = cofactor of the subgroup



ECDH – Elliptic Curve Diffie-Hellman

• Alice: 𝑑𝐴 ←𝑅 ℤ𝑛,   𝐻𝐴 = 𝑑𝐴𝐺

• Bob: 𝑑𝐵 ←𝑅 ℤ𝑛, 𝐻𝐵 = 𝑑𝐵𝐺

• Alice -> Bob: 𝐻𝐴
• Bob -> Alice: 𝐻𝐵

• Alice: 𝑑𝐴𝐻𝐵 = 𝑑𝐴𝑑𝐵𝐺

• Bob: 𝑑𝐵𝐻𝐴 = 𝑑𝐵𝑑𝐴𝐺

• Say 𝑆 = 𝑑𝐴𝑑𝐵𝐺 is the shared secret, can use it to derive a symmetric key



ECDSA – Elliptic Curve Digital Signature 
Algorithm

• Public Information: 𝑝, 𝑎, 𝑏, 𝐺, 𝑛, ℎ

• Alice’s Private Key: 𝑑𝐴
• Alice’s Public Key: 𝐻𝐴 = 𝑑𝐴𝐺

• Alice signs a message 𝑚 ∈ ℤ𝑛 by performing the following:

– 𝑘 ←𝑅 ℤ𝑛
– 𝑃 = 𝑘𝐺 = (𝑥𝑃 , 𝑦𝑃)

– 𝑟 = 𝑥𝑃 𝑚𝑜𝑑 𝑛,   if 𝑟 = 0 start over

– 𝑠 = 𝑘−1 𝑚 + 𝑟𝑑𝐴 𝑚𝑜𝑑 𝑛, if 𝑠 = 0 start over

– Output signature (𝑠, 𝑟)



ECDSA – Elliptic Curve Digital Signature 
Algorithm

• Bob can verify a message signed by performing the 
following:
– Bob gets 𝑚, 𝑠, 𝑟, 𝐻𝐴

– Calculate 𝑢1 = 𝑠−1𝑚 𝑚𝑜𝑑 𝑛, 𝑢2 = 𝑠−1𝑟 𝑚𝑜𝑑 𝑛

– Calculate 𝑃 = 𝑢1𝐺 + 𝑢2𝐻𝐴
– Valid if and only if 𝑟 = 𝑥𝑃 𝑚𝑜𝑑 𝑛



ECDSA – Elliptic Curve Digital Signature 
Algorithm

• Check that the algorithm is correct:

– 𝑃 = 𝑢1𝐺 + 𝑢2𝐻𝐴 = 𝑢1𝐺 + 𝑢2𝑑𝐴𝐺 = 𝑢1 + 𝑢2𝑑𝐴 𝐺

– 𝑃 = 𝑠−1𝑚 + 𝑠−1𝑟𝑑𝐴 𝐺 = 𝑠−1 𝑚 + 𝑟𝑑𝐴 𝐺

– 𝑠 = 𝑘−1 𝑚 + 𝑟𝑑𝐴 → 𝑘 = 𝑠−1 𝑚 + 𝑟𝑑𝐴

– 𝑃 = 𝑠−1 𝑚 + 𝑟𝑑𝐴 𝐺 = 𝑘𝐺 – Thus the signature will verify correctly



Acknowledgments

• Many slides created by Kyle Soska (TA for 
18733 in Spring 2016)



Pairing Based Cryptography

• Computational Diffie-Hellman

– Given 𝑔, 𝑔𝑎, 𝑔𝑏 compute 𝑔𝑎𝑏

• Decisional Diffie-Hellman

– Given 𝑔, 𝑔𝑎, 𝑔𝑏, cant tell 𝑔𝑎𝑏 apart from random element 𝑔𝑐 for 
random 𝑐

• Let 𝐺1, 𝐺2, 𝐺𝑇 be groups of prime order 𝑞, then a bilinear pairing denoted 
𝑒 is an operation that maps from 𝐺1 × 𝐺2 → 𝐺𝑇 such that 

• ∀𝑎, 𝑏 ∈ 𝔽𝑞 , ∀𝑃 ∈ 𝐺1, ∀𝑄 ∈ 𝐺2 𝑒 𝑎𝑃, 𝑏𝑄 = 𝑒 𝑃, 𝑄 𝑎𝑏 ≠ 1

• Idea: We can use pairing based cryptography to create a situation where 
Computational Diffie-Hellman is hard, but Decisional Diffie-Hellman is easy



Pairing Based Cryptography

• Computational Diffie-Hellman

– Given 𝑔, 𝑔𝑎, 𝑔𝑏 compute 𝑔𝑎𝑏

• Decisional Diffie-Hellman

– Given 𝑔, 𝑔𝑎, 𝑔𝑏, cant tell 𝑔𝑎𝑏 apart from random element 𝑔𝑐 for 
random 𝑐

• Suppose an adversary has 𝑔𝑎 , 𝑔𝑏, 𝑔𝑧, where 𝑔𝑧 is randomly 
either 𝑔𝑎𝑏 or 𝑔𝑐 for 𝑐 random. How can he check which one 
he has?

– 𝑒 𝑔𝑎 , 𝑔𝑏 = 𝑒 𝑔, 𝑔 𝑎𝑏 = 𝑒 𝑔, 𝑔𝑎𝑏

– Adversary computes 𝑒 𝑔, 𝑔𝑧 =? 𝑒 𝑔𝑎, 𝑔𝑏



Pairing Based Signatures (Boneh et al.)

• 𝑥 ←𝑅 ℤ𝑞

• Private Key: 𝑥,  Public Key: 𝑔𝑥

• Sign message m by hashing it yielding ℎ = 𝐻(𝑚) and signing the hash as 
𝜎 = ℎ𝑥

• Verify (𝜎, 𝑚) as 𝑒 𝜎, 𝑔 =? 𝑒 𝐻 𝑚 , 𝑔𝑥

– 𝑒 𝜎, 𝑔 = 𝑒 ℎ𝑥 , 𝑔 = 𝑒 𝐻 𝑚 𝑥, 𝑔 = 𝑒 𝐻 𝑚 , 𝑔 𝑥 = 𝑒 𝐻 𝑚 , 𝑔𝑥



Twists Of Elliptic Curves

• Suppose you have an elliptic curve 𝐸[𝑝] over some field 𝔽

• A twist of 𝐸[𝑝] another elliptic curve over a field extension of 𝔽

• A twist of 𝐸[𝑝] will be isomorphic to 𝐸[𝑝], namely it will have the same 
order, and there is a 1-1 onto mapping between them



Other Notes

• Weil Pairing is a well studied paring where the 
groups 𝐺 are elliptic curves

• There are many standardized elliptic curve groups
– 𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑎𝑥2 + 1 over 𝔽2𝑚, 𝑚 = prime and 
𝑎 = 0 or 1
• Koblitz Curves, very fast addition and multiplication

– 𝑥2 + 𝑦2 = 1 + 𝑑𝑥2𝑦2 where 𝑑 = 0 or 1
• Edwards Curves, point addition is the same in all cases, and 

reasonably fast


