Introduction to

Elliptic Curve Cryptography

Anupam Datta

$$
18-733
$$

Elliptic Curve Cryptography

- Public Key Cryptosystem
- Duality between Elliptic Curve Cryptography and Discrete Log Based Cryptography
- Groups / Number Theory Basis
- Additive group based on curves
- What is the point?
- Less efficient attacks exist so we can use smaller keys than discrete log / RSA based cryptography

Computing Dlog in $\left(Z_{p}\right)^{*} \quad$ (n-bit primep)

Best known algorithm (GNFS):
run time $\exp (\tilde{O}(\sqrt[3]{n}))$

cipher key size 80 bits
128 bits
256 bits (AES)

modulus size	group size
1024 bits	160 bits
3072 bits	256 bits
15360 bits	512 bits

As a result: slow transition away from $(\bmod p)$ to elliptic curves

Discrete Logs

- Let $p=2 q+1$ where p, q are large primes
- \mathbb{Z}_{p} is the group of integers modulo p
- $\left|\mathbb{Z}_{p}\right|=2 q$
- $G_{q}=Q R\left(\mathbb{Z}_{p}\right)$ is the quadratic residue subgroup of \mathbb{Z}_{p}
- $\left|Q R\left(\mathbb{Z}_{p}\right)\right|=q$, subgroup of prime order
- Every element $g \in G_{q}$ is a generator, pick a random one
- Pick secret x, compute $g^{x} \bmod p$
- Public: $\left(p, q, g, g^{x}\right)$ Secret: x
- Discrete Log Assumption: Given Public it is hard to find Secret

Outline

- Elliptic curves over reals
- Elliptic curves over Z_{p}
- ECDH and ECDSA

Elliptic Curves

- Consider the following equation:

$$
y^{2}=x^{3}+a x+b
$$

- Idea: we pick (a, b) and form a group which is a set containing all of the points that satisfy the equation
- This group will be defined with a very special addition operation which introduces an additional imaginary point

Example

Not all curves are valid elliptic curves

- Left: $y^{2}=x^{3}$ has a "cusp"
- Right: $y^{2}=x^{3}-3 x+2$ has a "self intersection"
- In general we require: $4 a^{3}+27 b^{2} \neq 0$
- Observation: curves are symmetric about the point $y=0$

Elliptic Curves as a Group

- Groups are sets defined over some operation with some structure / properties
- $G=\left\{(x, y): y^{2}=x^{3}+a x+b\right\}$
- Define an operation denoted by ' + ' such that:
- If $p_{1}, p_{2} \in G, p_{1}+p_{2} \in G$ (Closure)
- $\left(p_{1}+p_{2}\right)+p_{3}=p_{1}+\left(p_{2}+p_{3}\right)$ (Associative)
- $\exists 0$ s.t. $\forall p p+0=0+p=p$ (Identity)
- $\forall p \exists p^{-1}$ s.t. $p+p^{-1}=0$ (Inverse)
- Curves will form an abelian group
- $p_{1}+p_{2}=p_{2}+p_{1}$ (Communitive)

The Group Operation

- Not typical point-wise addition!
- What is this 0 element?
$-y^{2}=x^{3}+a x+b$ does not include $(0,0)$ if $b \neq 0$
- How do we know inverses exist if we don't know what the 0 element is?
- How do we maintain closure?
$-(x, y)+(x, y)=(2 x, 2 y)$ for typical pointwise addition which in general does not lie on the curve

The Group Operation

- Let $P, Q, R \in G$, such that a line passes through all of them, then group operation is:

$$
P+Q+R=0
$$

- This is strange, we have a relationship between points that lie along but no clear notion of traditional addition
- We can use the relationship to define a more traditional form of addition:

$$
P+Q=-R
$$

The Group Operation

- $P+Q=-R$
- $R=\left(x_{r}, y_{r}\right), \quad-R=\left(x_{r},-y_{r}\right)$
- What happens if we want to compute $-R+R$?
- What third point on the curve lies on the line defined by $(R,-R)$?
- We say this is the point defined at infinity, we denote it by 0 , and it is the additive identity
- $-R+R=0$
- Adjust our definition of the group:
- $G=\left\{(x, y): y^{2}=x^{3}+a x+b\right\} \cup\{0\}$

The Group Operation (Geometric)

- Given $G=\left\{(x, y): y^{2}=x^{3}+a x+b\right\} \cup\{0\}$, calculate $P+Q$
- Geometrically, figure out the third point R such that a line goes through P, Q, R and then set $\mathrm{P}+Q=-R$
- What could possibly go wrong?
- P or Q could be 0
- 0 Is the identity under the group operation, so $P+0=0+P=P$
$-\quad P=-Q$
- This is the case of $-R+R=0$ which was defined by the vertical line
- $P=Q$
- Imagine tangent to P , use that to find R. $P+P=-R$ describes the line tangent to P that intersects at R
- There is no $3^{\text {rd }}$ point
- This occurs when the line is tangent to exactly one of P or Q. Suppose the line is tangent to P, then from before we have $P+P=-Q$ which gives us $P+Q=-P$
- If line is tangent to Q, then $Q+Q=-P$ which would give us $P+Q=-Q$

Algebraic Solution

- Let $P \neq Q$, line defined by P, Q has slope

$$
m=\frac{y_{P}-y_{Q}}{x_{P}-x_{Q}}
$$

- Intersection with point $R=\left(\mathrm{x}_{\mathrm{R}}, \mathrm{y}_{\mathrm{R}}\right)$:
$-x_{R}=m^{2}-x_{P}-x_{Q}$
$-y_{R}=y_{P}+m\left(x_{R}-x_{P}\right)=\mathrm{y}_{\mathrm{Q}}+\mathrm{m}\left(\mathrm{x}_{\mathrm{R}}-\mathrm{x}_{\mathrm{Q}}\right)$
- How would we check that this is correct?
- Check if $\left(x_{R}, y_{R}\right) \in G$, if it is then correct with high probability

Multiplication

- We have defined addition, so now we can define multiplication
- $n * P=P+P+\ldots+P(n-$ times $)$
- Inefficient for multiplying by large numbers
- Use doubling algorithm, analogue of repeated squaring algorithm for exponentiation
- Calculate 19 (6 Additions):
- $A=1+1=2$
$-B=A+A=2+2=4$
$-C=B+B=4+4=8$
$-\quad D=C+C=16$
$-\quad 19=D+A+1$

Back to Discrete Logs

- In the discrete log setting, exponentiation was easy, but logs were hard
- g^{x} - Easy, $\log _{g} g^{x}$ - Hard
- In the elliptic curve setting, multiplication is easy but division is hard
- We still call division "logarithm" even though its really division here
- We used the asymmetry of these operations in the discrete log setting to do key exchange / encryption, can do a similar thing with elliptic curves

Fields

- A field is a set \mathbb{F} with two operations $(+, \times)$ that has the following properties:
$-\mathbb{F}$ is an abelian group under +
- The non-zero elements of \mathbb{F} are an abelian group under \times
$-a(b+c)=a b+a c \forall a, b, c \in \mathbb{F}$ (Distributive)

Elliptic Curves Over a Field

- Note: $\mathbb{Z}_{n}^{*}(+, \times)$ is a field when n is prime
- Refine the definition of the curve group again:
- $G=\left\{\begin{array}{c}(x, y) \in\left(\mathbb{F}_{P}\right)^{2}: y^{2}=x^{3}+a x+b(\bmod p) \\ \wedge 4 a^{3}+27 b^{2} \neq 0(\bmod p)\end{array}\right\} \cup\{0\}$
- Curves are now defined only at discrete points and not over the smooth lines that we had before

Elliptic Curves Over a Field

Operation for Curves Over a Field

Curve $y^{2}=x^{3}-x+3(\bmod 127), P=(16,20), Q=(41,120)$

Operation for Curves Over a Field

- The addition operation that we defined before works exactly the same on curves defined over a field
- All of the special cases are handled exactly the same as before
- Intersection with point $R=\left(\mathrm{x}_{\mathrm{R}}, \mathrm{y}_{\mathrm{R}}\right)$ still computed as:

$$
\begin{aligned}
& -x_{R}=m^{2}-x_{P}-x_{Q} \bmod p \\
& -y_{R}=y_{P}+m\left(x_{R}-x_{P}\right) \bmod p=y_{\mathrm{Q}}+\mathrm{m}\left(\mathrm{x}_{\mathrm{R}}-\mathrm{x}_{\mathrm{Q}}\right) \bmod p
\end{aligned}
$$

Order of Elliptic Curve Group

- \# of unique points in the group
- Could simply try and count them, but there are too many for this to be possible
- Efficient algorithms for computing this exist

Subgroups of Elliptic Curve Groups

- In the discrete log setting, we selected a generator g and computed $\left\{g^{0}, g^{1}, \ldots\right\} \bmod p$
- This group generated by the generator had an order that divided the order of the parent group by Lagrange's Theorem
- In Elliptic Curves we can select a point P which is like a generator and compute $\{0 P, P, 2 P, 3 P, \ldots\} \bmod p$, we call this a Base Point
- This operation will also generate a cyclic subgroup of the Elliptic curve group whose order divides the order of the parent group

Subgroups of Elliptic Curve Groups

- Suppose we pick a point, P, how can we find the order of the subgroup generated by P?
- Let N be the order of the parent group
- Let $N=p_{1}^{k_{1}} p_{2}^{k_{2}}$... be the prime factorization of N
- Let n be the order of the subgroup
- Idea: take all divisors of N , given by the prime factorization, and sort them smallest to largest, call them n. The order of the subgroup is the smallest n such that $\mathrm{nP}=0$.

Finding Base Point With High Order

- We will want to find a base point that generates a subgroup with prime order that is as high as possible
- Let $h=\frac{N}{n}$ we will call h the cofactor of the subgroup
- Let n be the largest prime factor in the prime factorization of N
- $N P=0$ because N is an integer multiple of any point P
- $n(h P)=0$ by re-writing $N=n h$
- This tells us that the point $h P=G$ has order n unless $G=0$
- G is a generator of a cyclic subgroup of prime order n

ECDH - Elliptic Curve Diffie-Hellman

- Regular Diffie-Hellman:
- Alice has secret a and computes g^{a}
- Bob has secret b and computes g^{b}
- They exchange and compute $g^{a b}$
- Key insight: it is hard for an adversary to compute $g^{a b}$ from g^{a}, g^{b}
- ECDH Setting, Public Parameters: (p, a, b, G, n, h)
- p = large prime
$-(a, b)=$ coefficients in $y^{2}=x^{3}+a x+b$
- $G=$ base point that generates subgroup of large prime order
- $n=$ order of the subgroup
- $h=$ cofactor of the subgroup

ECDH - Elliptic Curve Diffie-Hellman

- Alice: $d_{A} \leftarrow_{R} \mathbb{Z}_{n}, H_{A}=d_{A} G$
- Bob: $d_{B} \leftarrow_{R} \mathbb{Z}_{n}, H_{B}=d_{B} G$
- Alice -> Bob: H_{A}
- Bob -> Alice: H_{B}
- Alice: $d_{A} H_{B}=d_{A} d_{B} G$
- Bob: $d_{B} H_{A}=d_{B} d_{A} G$
- Say $S=d_{A} d_{B} G$ is the shared secret, can use it to derive a symmetric key

ECDSA - Elliptic Curve Digital Signature Algorithm

- Public Information: (p, a, b, G, n, h)
- Alice's Private Key: d_{A}
- Alice's Public Key: $H_{A}=d_{A} G$
- Alice signs a message $m \in \mathbb{Z}_{n}$ by performing the following:
$-k \leftarrow_{R} \mathbb{Z}_{n}$
- $P=k G=\left(x_{P}, y_{P}\right)$
- $r=x_{P} \bmod n$, if $r=0$ start over
$-s=k^{-1}\left(m+r d_{A}\right) \bmod n$, if $s=0$ start over
- Output signature (s, r)

ECDSA - Elliptic Curve Digital Signature Algorithm

- Bob can verify a message signed by performing the following:
- Bob gets $\left(m, s, r, H_{A}\right)$
- Calculate $u_{1}=s^{-1} m \bmod n, u_{2}=s^{-1} r \bmod n$
- Calculate $P=u_{1} G+u_{2} H_{A}$
- Valid if and only if $r=x_{P} \bmod n$

ECDSA - Elliptic Curve Digital Signature Algorithm

- Check that the algorithm is correct:
$-P=u_{1} G+u_{2} H_{A}=u_{1} G+u_{2} d_{A} G=\left(u_{1}+u_{2} d_{A}\right) G$
$-P=\left(s^{-1} m+s^{-1} r d_{A}\right) G=s^{-1}\left(m+r d_{A}\right) G$
$-s=k^{-1}\left(m+r d_{A}\right) \rightarrow k=s^{-1}\left(m+r d_{A}\right)$
- $P=s^{-1}\left(m+r d_{A}\right) G=k G$ - Thus the signature will verify correctly

Acknowledgments

- Many slides created by Kyle Soska (TA for 18733 in Spring 2016)

Pairing Based Cryptography

- Computational Diffie-Hellman
- Given g, g^{a}, g^{b} compute $g^{a b}$
- Decisional Diffie-Hellman
- Given g, g^{a}, g^{b}, cant tell $g^{a b}$ apart from random element g^{c} for random c
- Let G_{1}, G_{2}, G_{T} be groups of prime order q, then a bilinear pairing denoted e is an operation that maps from $G_{1} \times G_{2} \rightarrow G_{T}$ such that
- $\forall a, b \in \mathbb{F}_{q}, \forall P \in G_{1}, \forall Q \in G_{2} e(a P, b Q)=e(P, Q)^{a b} \neq 1$
- Idea: We can use pairing based cryptography to create a situation where Computational Diffie-Hellman is hard, but Decisional Diffie-Hellman is easy

Pairing Based Cryptography

- Computational Diffie-Hellman
- Given g, g^{a}, g^{b} compute $g^{a b}$
- Decisional Diffie-Hellman
- Given g, g^{a}, g^{b}, cant tell $g^{a b}$ apart from random element g^{c} for random c
- Suppose an adversary has g^{a}, g^{b}, g^{Z}, where g^{Z} is randomly either $g^{a b}$ or g^{c} for c random. How can he check which one he has?
$-e\left(g^{a}, g^{b}\right)=e(g, g)^{a b}=e\left(g, g^{a b}\right)$
- Adversary computes $e\left(g, g^{z}\right)=? e\left(g^{a}, g^{b}\right)$

Pairing Based Signatures (Boneh et al.)

- $x \leftarrow_{R} \mathbb{Z}_{q}$
- Private Key: x, Public Key: g^{x}
- Sign message m by hashing it yielding $h=H(m)$ and signing the hash as $\sigma=h^{x}$
- Verify (σ, m) as $e(\sigma, g)=? e\left(H(m), g^{x}\right)$

$$
-e(\sigma, g)=e\left(h^{x}, g\right)=e\left(H(m)^{x}, g\right)=e(H(m), g)^{x}=e\left(H(m), g^{x}\right)
$$

Twists Of Elliptic Curves

- Suppose you have an elliptic curve $E[p]$ over some field \mathbb{F}
- A twist of $E[p]$ another elliptic curve over a field extension of \mathbb{F}
- A twist of $E[p]$ will be isomorphic to $E[p]$, namely it will have the same order, and there is a 1-1 onto mapping between them

Other Notes

- Weil Pairing is a well studied paring where the groups G are elliptic curves
- There are many standardized elliptic curve groups
$-y^{2}+x y=x^{3}+a x^{2}+1$ over $\mathbb{F}_{2} m, m=$ prime and $a=0$ or 1
- Koblitz Curves, very fast addition and multiplication
$-x^{2}+y^{2}=1+d x^{2} y^{2}$ where $d=0$ or 1
- Edwards Curves, point addition is the same in all cases, and reasonably fast

