18733: Applied Cryptography

Human Computable Protocols:
Password-based Authentication

Anupam Datta

With Jeremiah Blocki and Manuel Blum



Memory Experiment 1

Action Tickling

Object Peach



Memory Experiment 2

Action Bouncing

Object Smore



Password Management

amazoncom.

EPNC
Slashdot_

News for Nerds. Stuff that matters.

Competing Goals:




Security Problem

e Password breaches at major companies have
affected millions of users.

ivingsocial  sony €Dy
Linked i} rockyou Zappos @

eeeeeeeeeeeeeeeeeeeeeeeeeeee

YAHOO, FA\ Adobe L —



Traditional Security Advice
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Usability Problem

I changed all my passwords to - incorrect”.

S0 wneneyer | mrgel itwill & =
tellme =Your nassworn IS incorrect; 4 o g
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Fundamental Question

* How can we evaluate password management
strategies?

— Quantify Usability
— Quantify Security
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Traditional Approach

Propose New Password
Management Scheme

User Study: Evaluate New
Password Management Scheme
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Our Thesis

User models and security models can guide the
development of human authentication schemes

with analyzable usability and security
properties.

Develop + Analyze

User Model Security Model
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Our Approach: User Models

User Model
Capabilities + Behavior

Example Capability: Users can remember a
random secret with enough rehearsal.

Example Behavior: How often a user visits each
website on average.



Our Approach: User Models

User Model .
. ll Fast: Evaluation
Capabilities + Behaviosias s, e

expensive user
studies

DEVE|Op + Ana Iyze password

management

User Model schemes

Empirical Validation
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Related Work
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Scheme 1: Reuse Strong Password

* Pick four random words w,,w,,w;,w,

S

Password W, W,W3W, W, W,W3W,,
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Scheme 2: Strong Random
Independent

Four Independent Random Words per Account

R o

Password W, W,W3W, X1X5X3X,
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Preview of Results

Human Computable Passwords

/

®<— Shared Cues
Independent Strong Passwords

Reuse Weak Password

Security

User Effort
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First Attempt: Chunking

e Memorize: nbccbsabc

* Memorize: tkgizrlwp |nC0mp|ete

* 3 Chunks vs. 9 Chunks! /

Usability Goal: Minimize Number of Chunks in
Passwords

Source: The magical number seven, plus or minus two [Miller, 56] 24




Human Memory: Vast, but Lossy

* Rehearse or Forget!

— How much work?

* Quantify Usability

— Rehearsal Assumption

amazoncom. > P22 70

Google> Py



Memory Capability

— I I

Day: 1 2 4 5 8

Expanding Rehearsal Assumption: user
maintains cue-association pair by rehearsing
during each interval [s', s"1].

Source: Optimization of Repetition Spacing in the Practice of Learning [WG, 94]
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Memory Capability

m_12hrX1.5
1.00 ~ -
0.75 -
0.50 =
0.25 =
0.00 -
Day 0 50 100 150

Succeeded(i)/Returned(i)

Source: Spaced Repetition and Mnemonics Enable Recall of Multiple Strong Passwords [BKgSDIS]



Natural Rehearsal

(o ] oes  do

Expanding Rehearsal Assumption: user
maintains cue-association pair by rehearsing
during each interval [s', s"1].

. Visit Amazon: Natural Rehearsal . Google

X,: extra rehearsals to maintain all passwords for t days.

Source: Optimization of Repetition Spacing in the Practice of Learning [WG, 94] »



Extra Rehearsals

(&1 —ofee oo

X,: extra rehearsals to maintain all passwords for t days.

Reuse Independent
Fasswcurd Passwords

USability Goal:MMinimize X, 2
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Usability Results

Reuse Strong Random
Strong Independent

Active 0.002 4+ 2,938 1
Typical 0.023 2,974

Occasional 0.109 3,135

Infrequent 3.239 4,024

E[X_]: Extra Rehearsals to maintain all passwords over lifetime.
m = 75 accounts, s=1.5
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Security (what could go wrong?)

Three Types of Attacks

Recovery

Danger
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Online Attack

Guess Limit: k-strikes policy
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Offline Dictionary Attack

jblocki, Unbr3akabl3

jblocki 89d978034a3f6 75fe9ccfd4as56
8f31e66b859
7b8eb97c2e9

15e6b1

SHA1(Unbr3akabl389d978034a3f6)=
75fe9ccf4a568f31e66b8597b8eb97c2e

ﬂl . ﬂ 915e6b1
' n
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Plaintext Recovery Attack

[FERAFEY] 341 com

camera

Clothes Hook MINI DVR
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Security Philosophy

* Dangerous World Assumption

— Targeted adversary has background information
about our user (e.g., Hobbies, Birthdate)

— Adversary can adapt after learning the user’s new
password management strategy

* Limit Damage when something goes wrong
— Offline attacks should fail with high probability
— Contain damage of a successful phishing attack



Security as a Game

%E.

Vo

g guesses
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(g, 4,m,s,r,h)-Security

For any adversary Adv

Pr [‘ Adv,q,m,s,r,h] <J

q = # offline guesses s = # online guesses

— r=#v

Plaintext Recovery Accounts
m = # of accounts

Offline Attack Accounts
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Security Results

Reuse No No
Strong Yes Yes Yes Yes
Random

Independent Unusable + Secure

(101, §,m,3,r,h)-security
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Preview of Results

Human Computable Passwords

®<—— sShared Cues /

Independent Strong Passwords
Combinatorial Design

Security

User Effort
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Our Approach

Public Cue Private

-~

Action: kicking
|

Object: penguin




amazon.com.

Pwd

-

Object

+

. + Pir
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Login

Action

+ Kis
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Sharing Cues

(o o[- oo
Day: 1 2 4 5 8
e Usability Advantages

— Fewer stories to remember!
— More Natural Rehearsals!

* Security?
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(n,€, y)-Sharing Set Family

Definition: A (n,£,y)-Sharing Set Family of size m
is a family of sets {S,,...,S,,} with the following
properties




(n,€, y)-Sharing Set Family

m — number of passwords {S,,...,S,.}.
n/2 — total #PAO stories
£ - #words in each pwd

Y — max intersection
S; — PAO stories for
account i.



Sharing Cues

Thm: There is a (43,4,1)-Sharing Set Family of
size m=90

 Proof?

— Chinese Remainder Theorem!

— Notice that 43 =9+10+11+13 where 9, 10, 11, 13
are pair wise coprime.

— A, uses cues: {imod 9, i mod 10, i mod 11, i mod
13}
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Chinese Remainder Theorem

By the Chinese Remainder Theorem there is a
unique number x s.t

1)1 <x <90
2) x =imod9
3) x =imod 10

Hence, for i # j accounts A; and A, cannot use
the same red cue and blue cue.
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Usability Results

Strong Random

Independent
Active 20 2,938 9.8 4.0
Typical 0 2,974 11.8 4.5
Occasional [0 3,135 15.2 5.5
Infrequent 3.2 4,024 93.2 25.7

E[X_]: Extra Rehearsals to maintain all passwords over lifetime.
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Summary: Shared Cues

[Reuse] Usable + Insecure

(n,£,0)-Sharing Yes Yes Yes Yes
[Independent]

(n,8,3)-Sharing Yes Yes Yes
[SC-1] Usable + Secure
(n,5,3)-Sharing Yes No No

[SC-0]
(101, §,m,3,r,h)-security

Usable + Secure
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Preview of Results

‘y Computable Passwords

®<—— Shared Cues

Independent Strong Passwords

Hardness of Ranhdom

Security

Planted Satisfiability

User Effort
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Our Scheme: Human Computable
Passwords

 Remains secure many breaches (e.g., 100)
— Heartbleed

e Passwords computed by responding to public
challenges

— Computation done in user’s head

* Required Operations
— Addition modulo 10
— Memorize a random mapping



Human Computation

* Restricted Capabilities
— Simple operations (addition, lookup)
— Operations performed in memory (limited space)

8945309234
94+ 8 =7mod 10 +2348979234 =7




Random Mapping

Image |

2(1) 9 3 6

Initialization:
User Memorizes Random Mapping

@ {l,,..1 } > {0,1, ..., 9}

Example: n=30 images
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Mnemonics

Instruction: Trace the eagles body from the
bottom of the eagle’s beak down to the bottom
of the picture. It looks like the number 7.
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Computing the Response:

i} o (#%nod 10

= 9+3mod10=2
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= 9+3mod10=2
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Single-Digit Challenge

=7+4+5mod 10 = 6
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Username:

Password:

Passwords

jblocki
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Passwords

Password: sk

Username: Blsl6le4



Passwords

Password: %k k 1

Username: Blsl6le4




SAT Solver Attack

M=50 100 300 500 1000 10000

g N=26 23.5hr 40min 45hr 29min 10 min 2 min
go N J— UNSLV 2.3hr 36min 10min 20s
% (Yo J U — UNSLV 7 hr
8 NZ100  cooooems oo s e UNSLV

UNSLV — Solver did not find secret mapping in 2.5
days

-------- — Instance is harder than unsolved instance

#Leaked Challenge Response Pairs (M)
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Usability

Example Authentication Time:

* 7.5 seconds/digit

* 30 seconds for a 4-digit password

e 1.25 minutes for a 10-digit password
Memorizing the Secret Mapping:

 Memorized 100 image/digit pairs in 2.5 hours
* One Time Cost



Usability (Memorization)

Human Computable Shared Cues
Passwords

N=100 N=50 N=30 SC-1 SC-0

Active 0.40 F10 210 3.93 F10
Typical 2.14 710.04 210 10.89 [0
Occasional 2.50 ?10.05 210 22.07 [0
Infrequent 70.7 [22.3 (6.1 119.77 2.44

E[X;¢s]: Extra Rehearsals to maintain all passwords over the first
year.
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Theoretical Security Guarantees

Thm (Informal): Any statistical algorithm needs to
see at least m = 5(n1'5) passwords before it can
even approximately guess the secret mapping o.

Example: n=30 images

74




Security

Thm (Informal): Any statistical algorithm needs to

see at least m = 5(n1'5) passwords before it can
even approximately guess the secret mapping o.

Thm (Informal): Any polynomial time adversary

needs to see m = 5(1’13) passwords before he can

use Gaussian Elimination to approximately guess
the secret mapping o.

Thm (Informal): Any polynomial time adversary
who can guess the user’s passwords with accuracy
much better than random guessing can also
approximately recover the secret mapping o.




Memory Experiment 1
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Memory Experiment 2
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Our Thesis

User models and security models can guide the
development of human authentication schemes

with analyzable usability and security
properties.

Develop + Analyze

User Model Security Model
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Thanks for Listening!
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Technical Tools

e Discrimination Norm

— On average how much different would the answers to
a query q be if we picked a random challenge and a
random response?

— Small discrimination norm => Statistical Algorithm
must use deep tree. [FPV13]

* Fourier Analysis
— Express discrimination norm as a low degree function

* Generalized Hypercontractivity Theorem
— Bounds the expected value of low degree functions



Statistical Algorithm




Statistical Algorithm
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Statistical Algorithm
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Statistical Algorithm

/l\

q, 9,7

VAN
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Security

Thm (Informal): Any [statistical algorithm) needs to
see at least m = 5(n1'5) passwords before it can
even approximately guess thé secret mapping o.

/ \
xRSt RlsknAypalsorithmic techniques
Spectral Methods

Local Search
Expectation Maximization
First and Second Order Methods for Convex
Optimization
- o Eliminati
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