
DIGITAL SIGNATURES

1 / 1

Signing by hand

Pay Bob $100

AliceCosmo

COSMO ALICE

Alice

ALICE

· · ·

· · ·

=?

yes

pay Bob

no

Don’t

Bank

2 / 1

Signing electronically

ALICE
Pay Bob $100InternetBank

101 · · · 1

AlicescanSIGFILE
︸ ︷︷ ︸

3 / 1

Signing electronically

ALICE
Pay Bob $100InternetBank

101 · · · 1

AlicescanSIGFILE
︸ ︷︷ ︸

Problem: signature is easily copied

Inference: signature must be a function of the message that only Alice
can compute

3 / 1

What about a MAC?

Let Bank and Alice share a key K

ALICE
Pay Bob $100 MAC K

T

Internet

Bank

A digital signature will have additional attributes:

• Even the bank cannot forge

• Verifier does not need to share a key with signer or, indeed, have
any secrets

4 / 1

Digital signatures

A digital signature scheme DS = (K,S,V) is a triple of algorithms
where

AV
M

σ′

M ′

σ

0/1

S

pk

sk

K

Correctness: V(pk ,M,S(sk ,M)) = 1 with probability one for all M.

5 / 1

Usage

Step 1: key generation
Alice lets (pk , sk)

$
←K and stores sk (securely).

Step 2: pk dissemination
Alice enables any potential verifier to get pk .

Step 3: sign
Alice can generate a signature σ of a document M using sk .

Step 4: verify
Anyone holding pk can verify that σ is Alice’s signature on M.

6 / 1

Dissemination of public keys

The public key does not have to be kept secret but a verifier needs to
know it is authentic, meaning really Alice’s public key and not someone
else’s.

Could put (Alice,pk) on a trusted, public server (cryptographic DNS.)

Common method of dissemination is via certificates as discussed later.

7 / 1

Signatures versus MA schemes

In a MA scheme:

• Verifier needs to share a secret with sender

• Verifier can “impersonate” sender!

In a digital signature scheme:

• Verifier needs no secret

• Verifier cannot “impersonate” sender

8 / 1

Security of a DS scheme

Possible adversary goals

• find sk

• Forge

Possible adversary abilities

• can get pk

• known message attack

• chosen message attack

9 / 1

uf-cma adversaries

A

pk

σ

M

S

V

sk

pk

d

M1

σ1

Mq

σq

...

A wins if

• d = 1

• M /∈ {M1, . . .Mq}
10 / 1

Security of a DS scheme

Interpretation: adversary cannot get a verifier to accept σ as Alice’s
signature of M unless Alice has really previously signed M, even if
adversary can obtain Alice’s signatures on messages of the adversary’s
choice.

As with MA schemes, the definition does not require security against
replay. That is handled on top, via counters or time stamps.

11 / 1

Formalization: UF-CMA

Let DS = (K,S,V) be a signature scheme and A an adversary.

Game UF-CMADS

procedure Initialize
(pk , sk)

$←K; S ← ∅
return pk

procedure Finalize(M, σ)
d ← V(pk ,M, σ)
return (d = 1 ∧M /∈ S)

procedure Sign(M):

σ
$←S(sk ,M)

S ← S ∪ {M}
return σ

The uf-cma advantage of A is

Advuf-cma

DS (A) = Pr
[
UF-CMAA

DS ⇒ true
]

12 / 1

A difference with MACs

The UF-CMA game for MA schemes gave the adversary a verification
oracle which is not given in the DS case.

Why?

13 / 1

A difference with MACs

The UF-CMA game for MA schemes gave the adversary a verification
oracle which is not given in the DS case.

Why? Verification in a MA scheme relies on the secret key but in a DS
scheme, the adversary can verify on its own anyway with the public key,
so the oracle would not provide an extra capability.

13 / 1

Strong unforgeability

Adversary can’t get receiver to accept σ as Alice’s signatre on M unless

• UF: Alice previously signed M

• SUF: Alice previously signed M and produced signature σ

Adversary wins if it gets receiver to accept σ as Alice’s signature on M

and

• UF: Alice did not previously sign M

• SUF: Alice may have previously signed M but the signature(s)
produced were different from σ

14 / 1

Formalization: SUF-CMA

Let DS = (K,S,V) be a signature scheme and A an adversary.

Game SUF-CMADS

procedure Initialize:
(pk , sk)

$←K; S ← ∅
return pk

procedure Finalize(M, σ):

return V(pk ,M, σ) = 1 and (M, σ) /∈ S

procedure Sign(M):

σ
$←S(sk ,M)

S ← S ∪ {(M, σ)}
return σ

The suf-cma advantage of A is

Advsuf-cma

DS (A) = Pr
[
SUF-CMAA

DS ⇒ true
]

15 / 1

RSA signatures

Fix an RSA generator Krsa and let the key generation algorithm be

Alg K
(N, p, q, e, d)

$←Krsa

pk ← (N, e); sk ← (N, d)
return pk , sk

We will use these keys in all our RSA-based schemes and only describe
signing and verifying.

16 / 1

Plain RSA signatures: Idea

Signer pk = (N, e) and sk = (N, d)

Let f , f −1: Z
∗
N → Z

∗
N be the RSA function (encryption) and inverse

(decryption) defined by

f (x) = xe mod N and f −1(y) = yd mod N .

Sign by “decrypting” the message y :

x = SN,d (y) = f −1(y) = yd mod N

Verify by “encrypting” signature x :

VN,e(x) = 1 iff f (x) = y iff xe ≡ y mod N .

17 / 1

Plain RSA signature scheme

Signer pk = (N, e) and sk = (N, d)

Alg SN,d (y):

x ← yd mod N

return x

Alg VN,e(y , x):

if xe ≡ y (mod N) then return 1
return 0

Here y ∈ Z
∗

N is the message and x ∈ Z
∗

N is the signature.

18 / 1

Security of plain RSA signatures

To forge signature of a message y , the adversary, given N, e but not d ,
must compute yd mod N, meaning invert the RSA function f at y .

But RSA is 1-way so this task should be hard and the scheme should be
secure.

Correct?

19 / 1

Security of plain RSA signatures

To forge signature of a message y , the adversary, given N, e but not d ,
must compute yd mod N, meaning invert the RSA function f at y .

But RSA is 1-way so this task should be hard and the scheme should be
secure.

Correct?

Of course not...

19 / 1

Attacks on plain RSA

Existential forgery under no-message attack: Given pk = (N, e)
adversary outputs

• message y = 1 and signature x = 1

• message y = xe mod N and signature x for any x ∈ Z
∗

N of its
choice

Adversary wins because in both cases we have

xe ≡ y (mod N)

20 / 1

Homomorphic properties of RSA

Let pk = (N, e) and sk = (N, d) be RSA keys. Then ∀x1, x2 ∈ Z
∗
N and

∀y1, y2 ∈ Z
∗
N

• (x1x2)
e ≡ xe1 · x

e
2 mod N

• (y1y2)
d ≡ yd1 · y

d
2 mod N

That is

• f (x1x2) ≡ f (x1) · f (x2) mod N

• f −1(y1y2) ≡ f −1(y1) · f
−1(y2) mod N

where
f (x) = xe mod N and f −1(y) = yd mod N

are the RSA function and its inverse respectively.

21 / 1

Another attack on plain RSA

For all messages y1, y2 ∈ Z
∗

N we have

SN,d (y1y2) = SN,d (y1)
︸ ︷︷ ︸

x1

· SN,d (y2)
︸ ︷︷ ︸

x2

So given x1, x2 one can forge signature of message y1y2 mod N

Adversary A(N, e):

Pick some distinct y1, y2 ∈ Z
∗
N − {1}

x1 ← Sign(y1); x2 ← Sign(y2)
return (y1y2 mod N, x1x2 mod N)

22 / 1

DH signatures

When Diffie and Hellman introduced public-key cryptography they
suggested the DS scheme

S(sk ,M) = D(sk ,M)

V(pk ,M, σ) = 1 iff E (pk , σ) = M

where (E ,D) is a public-key encryption scheme.

But

• This views public-key encryption as deterministic; they really mean
trapdoor permutations in our language

• Plain RSA is an example

• It doesn’t work!

Nonetheless, many textbooks still view digital signatures this way.

23 / 1

Other issues

In plain RSA, the message is an element of Z∗

N . We really want to be
able to sign strings of arbitrary length.

24 / 1

Throwing in a hash function

Let H: {0, 1}∗ → Z
∗

N be a public hash function and let pk = (N, e) and
sk = (N, d) be the signer’s keys. The hash-then-decrypt scheme is

Alg SN,d (M):
y ← H(M)
x ← yd mod N

return x

Alg VN,e(M, x):
y ← H(M)
if xe ≡ y (mod N) then return 1
return 0

Succinctly,
SN,d(M) = H(M)d mod N

Different choices of H give rise to different schemes.

25 / 1

What we need from H

Suppose an adversary can find a collision for H, meaning distinct
M1,M2 with H(M1) = H(M2).

Then
H(M1)

d ≡ H(M2)
d (mod N)

meaning M1,M2 have the same signature.

So forgery is easy:

• Obtain from signing oracle the signature x1 = H(M1)
d mod N of

M1

• Output M2 and its signature x1

Conclusion: H needs to be collision-resistant

26 / 1

Preventing previous attacks

For plain RSA

• 1 is a signature of 1

• SN,d(y1y2) = SN,d(y1) · SN,d (y2)

But with hash-then-decrypt RSA

• H(1)d 6≡ 1 so 1 is not a signature of 1

• SN,d(M1M2) = H(M1M2)
d 6≡ H(M1)

d · H(M2)
d (mod N)

A “good” choice of H prevents known attacks.

27 / 1

RSA PKCS#1 signatures

Signer has pk = (N, e) and sk = (N, d) where |N| = 1024. Let
h: {0, 1}∗ → {0, 1}160 be a hash function (like SHA-1) and let
n = |N|8 = 1024/8 = 128.

Then
HPKCS(M) = 00||01||FF || . . . ||FF

︸ ︷︷ ︸

n−22

|| h(M)
︸ ︷︷ ︸

20

And
SN,d (M) = HPKCS(M)d mod N

Then

• HPKCS is CR as long as h is CR

• HPKCS(1) 6≡ 1 (mod N)

• HPKCS(y1y2) 6≡ HPKCS (y1) · HPKCS (y2) (mod N)

• etc
28 / 1

Does 1-wayness prevent forgery?

Forger’s goal

A

N, e

yd mod N

A

M

H y

y here need not be random

Inverter’s goal

y

yd mod NA
N, e

y here is random

Problem: 1-wayness of RSA does not imply hardness of computing
yd mod N if y is not random

29 / 1

HPKCS revisited

Recall
HPKCS (M) = 00||01||FF || . . . ||FF ||h(M)

But first n − 20 = 108 bytes out of n are fixed so HPKCS (M) does not
look “random” even if h is a RO or perfect.

We cannot hope to show RSA PKCS#1 signatures are secure assuming
(only) that RSA is 1-wayno matter what we assume about h and even if
h is a random oracle.

30 / 1

Goal

We will validate the hash-then-decrypt paradigm

SN,d(M) = H(M)d mod N

by showing the signature scheme is provably UF-CMA assuming RSA is
1-way as long as H is a RO.

This says the paradigm has no “structural weaknesses” and we should
be able to get security with “good” choices of H.

31 / 1

Choice of H

A “good” choice of H might be something like

H(M) = first n bytes of

SHA1(1 ||M) || SHA1(2 ||M) || · · · || SHA1(11 ||M)

32 / 1

Full-Domain-Hash (FDH) [BR96]

Signer pk = (N, e) and sk = (N, d)

algorithm SHN,d (M)

return H(M)d mod N

algorithm VHN,e(M, x)

if xe ≡ H(M) (mod N) then return 1
else return 0

Here H: {0, 1}∗ → Z
∗

N is a random oracle.

33 / 1

UF-CMA in RO model

Let DS = (K,S,V) be a signature scheme and A an adversary.

Game UF-CMADS

procedure Initialize:
(pk , sk)

$←K; S ← ∅
return pk

procedure Finalize(M, σ):

return VH(pk ,M, σ) = 1 and M /∈ S

procedure Sign(M):

σ
$←SH(sk ,M)

S ← S ∪ {M}
return σ

procedure H(M):

if H[M] = ⊥ then H[M]
$←R

return H[M]

Here R is the range of H.

The uf-cma advantage of A is

Advuf-cma

DS (A) = Pr
[
UF-CMAA

SD ⇒ true
]

34 / 1

Security of FDH in RO model

Theorem: [BR96] Let Krsa be a RSA generator and DS = (K,S,V) the
associated FDH RO-model signature scheme. Let A be a uf-cma
adversary making qs signing queries and qH queries to the RO H and
having running time at most t. Then there is an inverter I such that

Advuf-cma

DS (A) ≤ (qs + qH + 1) · Advowf

Krsa
(I) .

Furthermore the running time of I is that of A plus the time for
O(qs + qH + 1) computations of the RSA function.

35 / 1

RO proofs for encryption

There is a “crucial” hash query Q such that

• If A does not query Q it has 0 advantage

• If A queries Q an overlying algorithm can “see” it and solve some
presumed hard computational problem

Example: In the RO EG KEM, Q = gxy where pk = gx and gy is in
challenge ciphertext.

36 / 1

Programming the RO

For signatures we exploit the RO model in a new way by replying to RO
queries with carefully constructed objects. In particular the inverter I
that on input y aims to compute yd mod N might reply to a RO query
M made by A via

• y or some function thereof

• xe mod N for x
$← Z

∗

N chosen by I

Thus I is “programming” H(M) to equal values of I ’s choice.

37 / 1

The case qs = 0 and qH = 1

Assume A

• Makes no Sign queries

• Makes exactly one H-query M

• Then outputs a forgery (M, σ)

Let us see how to build I so that

Advuf-cma

DS (A) = Advowf

Krsa
(I) .

38 / 1

The case qs = 0 and qH = 1

A

N, e

H

(M, σ)

M

w

Advuf-cma

DS (A) = Pr [σe ≡ w (mod N)]

39 / 1

The inverter for the case qs = 0 and qH = 1

A

(M, σ)

Inverter I

HSim

w ←?

M

w y

?

N, e

Q: How should I choose w and what should it output?

40 / 1

The inverter for the case qs = 0 and qH = 1

A

(M, σ)

Inverter I

HSim

w ←?

M

w y

?

N, e

Q: How should I choose w and what should it output?

A: Let w = y and output σ!

40 / 1

The inverter for the case qs = 0 and qH = 1

A

Inverter I

HSimM

w yw ← y

σ
M

σ

N, e

Advuf-cma

DS (A) = Pr [σe ≡ w (mod N)]

= Pr [σe ≡ y (mod N)]

= Advowf

Krsa
(I)

41 / 1

The inverter for the case qs = 0 and qH = 1

Inverter I (N, e, y):
(M, σ)← AHSim(N, e)
return σ

subroutine HSim(M):
return y

Then
Advuf-cma

DS (A) = Advowf

Krsa
(I) .

42 / 1

The case qs = 0 and qH > 1

Assume A

• Makes no Sign queries

• Makes H-queries M1, . . . ,MqH

• Then outputs a forgery (M, σ) such that M ∈ {M1, . . . ,MqH}

Let us see how to build I so that

Advuf-cma

DS (A) = qH ·Adv
owf

Krsa
(I) .

43 / 1

The case qs = 0 and qH > 1

H

M1

y1

...

MqH

yqH

(M, σ)

A

(N, e)

Let i be such that M = Mi .

Advuf-cma

DS (A) = Pr [σe ≡ yi (mod N)]

44 / 1

Inverter for the case qs = 0 and qH > 1

As before, return y in response to a H-query:

Inverter I (N, e, y):

(M, σ)
$← AHSim(N, e)

return σ

subroutine HSim(M):
return y

45 / 1

Inverter for the case qs = 0 and qH > 1

As before, return y in response to a H-query:

Inverter I (N, e, y):

(M, σ)
$← AHSim(N, e)

return σ

subroutine HSim(M):
return y

Say A’s queries are M1, . . . ,Mq and M = Mi . Then if σe ≡ H(Mi)
(mod N) we have σe ≡ y (mod N) so I wins so

Advuf-cma

DS (A) = Pr [σe ≡ yi (mod N)] = Advowf

Krsa
(I) .

45 / 1

Inverter for the case qs = 0 and qH > 1

As before, return y in response to a H-query:

Inverter I (N, e, y):

(M, σ)
$← AHSim(N, e)

return σ

subroutine HSim(M)
return y

This is wrong because the answers to A’s queries are not independent,
meaning HSim does not look like a “real” RO.
What if A made queries M1 6= M2 and on getting back y1, y2 aborted if
y1 = y2? A’s advantage in the simulation could be 0.

46 / 1

Inverter for the case qs = 0 and qH > 1

We could return y in response to a random query and random values in
response to the rest:

Inverter I (N, e, y):

g
$←{1, . . . , qH}; j ← 0

(M, σ)
$
← AHSim(N, e)

return σ

subroutine HSim(M)
j ← j + 1
if j = g then yi ← y

else yj
$
← Z

∗
N

return yj

Say A’s queries are M1, . . . ,MqH and M = Mi . Then if σe ≡ yi
(mod N) and i = g we have σe ≡ y (mod N), so

Advuf-cma

DS (A) = qH ·Adv
owf

Krsa
(I) .

47 / 1

The case qs > 0

H

M1

y1

...

MqH

yqH

A

(M, σ)

Sign

M ′
1

(N, d)

(N, e)

σqs

σ1
...

M ′
qs

48 / 1

Replying to Sign queries

How can the Inverter I (not knowing d) return the signature
H(M)d mod N in response to Sign query M?

Trick: When M ′
i is queried to H, Inverter will

• pick xi
$
← Z

∗
N and let yi ← xei mod N

• Return H(M ′
i) = yi

Then if there is a Sign(M ′
i) query it can return xi as the signature.

49 / 1

Simplification

Assume that if A

• Makes Sign query M, it has previously made H-query M

• Outputs (M, σ) then it has previously made H-query M and not
made Sign query M

Can easily modify A to have these properties at the cost of increasing
the number of H-queries to

q = qs + qH + 1 .

Also assume A never repeats a H-query.

50 / 1

Inverter for case qs > 0

Inverter I (N, e, y):

g
$
←{1, . . . , qH}; j ← 0

(M, σ)
$← AHSim,SignSim(N, e):

return σ

subroutine SignSim(M)
j ← Ind(M)
return xj

subroutine HSim(M)
j ← j + 1; Mj ← M; Ind(M)← j

if j = g then H[M]← y ; xj ← ⊥

else xj
$
← Z

∗
N ; H[M]← xej mod N

return H[M]

51 / 1

Analysis intuition

Let i be such that A outputs (M, σ) with M = Mi . Then if i = g

• σe ≡ H(Mi) ≡ y (mod N) so inverter finds σ = yd mod N

• All A’s queries are correctly answered

Since i = g with probability 1/q we have

Advowf

Krsa
(I) ≥

1

q
·Advuf-cma

DS (A) .

52 / 1

Fundamental Lemma variant

Lemma [BR06] Let Gi ,Gj be identical-until-bad games and A an
adversary. Then for any y

Pr
[

GA
i ⇒ y ∧ GA

i doesn’t set bad
]

= Pr
[

GA
j ⇒ y ∧ GA

j doesn’t set bad
]

53 / 1

Analysis

Games G0, G1

procedure Initialize
(N, p, q, e, d)

$←Krsa

g
$
←{1, . . . , qH}; j ← 0; y

$
← Z

∗
N

return (N, e)

procedure Sign(M)
j ← Ind(M)

if j = g then xj ← yd mod N

return xj

procedure H(M)
j ← j + 1; Mj ← M; Ind(M)← j

if j = g then H[M]← y ; xj ← ⊥

else xj
$← Z

∗
N ; H[M]← xej mod N

return H[M]

procedure Finalize(M, σ)
j ← Ind(M)
if j 6= g then bad← true
return (σe ≡ H[M] (mod N))

54 / 1

Analysis

Let Badi be the event that Gi sets bad. Then

Advowf

Krsa
(I) ≥ Pr

[

GA
0 ⇒ true ∧ Bad0

]

= Pr
[

GA
1 ⇒ true ∧ Bad1

]

where last line is due to Fundamental Lemma variant. But the events
“GA

1 ⇒ true and “Bad1” are independent so

= Pr
[

GA
1 ⇒ true

]

· Pr
[
Bad1

]

= Advuf-cma

DS (A) ·
1

q

55 / 1

Security of FDH in RO model

Theorem: [BR96] Let Krsa be a RSA generator and DS = (K,S,V) the
associated FDH RO-model signature scheme. Let A be a uf-cma
adversary making qs signing queries and qH queries to the RO H and
having running time at most t. Then there is an inverter I such that

Advuf-cma

DS (A) ≤ (qs + qH + 1) · Advowf

Krsa
(I) .

Furthermore the running time of I is that of A plus the time for
O(qs + qH + 1) computations of the RSA function.

56 / 1

Choosing a modulus size

Say we want 80-bits of security, meaning a time t attacker should have
advantage at most t · 2−80:

• For inverting RSA, this is provided by a 1024 bit modulus assuming
NFS is the best attack.

• But according to the BR96-reduction, FDH could be less secure
than RSA by a factor of qs + qH + 1, so that a bigger modulus
would be needed for 80-bit security.

57 / 1

Choosing a modulus size

Say we want 80-bits of security, meaning a time t attacker should have
advantage at most t ·2−80. The following shows modulus size k and cost
c of one exponentiation, with qH = 260 and qs = 245 in the FDH case:

Task k c

Inverting RSA 1024 1

Breaking FDH as per [BR96] reduction 3700 47

This (for simplicity) neglects the running time difference between A, I .

This motivates getting tighter reductions for FDH, or alternative
schemes with tighter reductions.

58 / 1

Better analysis of FDH in RO model

Theorem: [Co00] Let Krsa be a RSA generator and DS = (K,S,V) the
associated FDH RO-model signature scheme. Let A be a uf-cma
adversary making qs signing queries and qH queries to the RO H and
having running time at most t. Then there is an inverter I such that

Advuf-cma

DS (A) ≤ O(qs) ·Adv
owf

Krsa
(I) .

Furthermore the running time of I is that of A plus the time for
O(qs + qH + 1) computations of the RSA function.

59 / 1

Choosing a modulus size

Say we want 80-bits of security, meaning a time t attacker should have
advantage at most t ·2−80. The following shows modulus size k and cost
c of one exponentiation, with qH = 260 and qs = 245 in the FDH case:

Task k c

Inverting RSA 1024 1

Breaking FDH as per [BR96] reduction 3700 47

Breaking FDH as per [Co00] reduction 2800 21

60 / 1

PSS [BR96]

Signer pk = (N, e) and sk = (N, d)

algorithm Sh,g1,g2N,d (M)

r
$←{0, 1}160

w ← h(M || r)
r∗ ← g1(w) ⊕ r

y ← 0 || w || r∗ || g2(w)
return yd mod N

algorithm Vh,g1,g2N,e (M, x)

y ← xe mod N

b || w || r∗ || P ← y

r ← r∗ ⊕ g1(w)
if (g2(w) 6= P) then return 0
if (b = 1) then return 0
if (h(M || r) 6= w) then return 0
return 1

Here h, g1: {0, 1}
∗ → {0, 1}160 and g2: {0, 1}

∗ → {0, 1}k−321 are
random oracles where k = |N|.

61 / 1

Choosing a modulus size

Say we want 80-bits of security, meaning a time t attacker should have
advantage at most t · 2−80. The following shows modulus size k and
cost c of one exponentiation, with qH = 260 and qs = 245 in the FDH
and PSS cases:

Task k c

Inverting RSA 1024 1

Breaking FDH as per [BR96] reduction 3700 47

Breaking FDH as per [Co00] reduction 2800 21

Breaking PSS as per [BR96] reduction 1024 1

62 / 1

Choosing a modulus size

There are no attacks showing that FDH is less secure than RSA,
meaning there are no attacks indicating FDH with a 1024 bit modulus
has less than 80 bits of security. But to get the provable guarantees we
must use larger modulii as shown, or use PSS.

63 / 1

PSS usage

• RSA PKCS#1 v2.1.

• IEEE P1363a

• ANSI X9.31

• RFC 3447

• ISO/IEC 9796-2

• CRYPTREC

• NESSIE

64 / 1

ElGamal Signatures

Let G = Z∗
p = 〈g〉 where p is prime.

Signer keys: pk = X = gx ∈ Z∗
p and sk = x

$← Zp−1

Algorithm Sx(m)

k
$← Z∗

p−1

r ← gk mod p

s ← (m − xr) · k−1 mod (p − 1)
return (r , s)

nnnnn

Algorithm VX (m, (r , s))
if (r /∈ G or s /∈ Zp−1)

then return 0
if (X r · r s ≡ gm mod p)

then return 1
else return 0

Correctness check: If (r , s)
$←Sx(m) then

X r ·r s = gxrgks = gxr+ks = gxr+k(m−xr)k−1 mod (p−1) = gxr+m−xr = gm

so VX (m, (r , s)) = 1.

65 / 1

Security of ElGamal Signatures

Signer keys: pk = X = gx ∈ Z∗
p and sk = x

$← Zp−1

Algorithm Sx(m)

k
$← Z∗

p−1

r ← gk mod p

s ← (m − xr) · k−1 mod (p − 1)
return (r , s)

Algorithm VX (m, (r , s))
if (r /∈ G or s /∈ Zp−1)

then return 0
if (X r · r s ≡ gm mod p)

then return 1
else return 0

Suppose given X = gx and m the adversary wants to compute r , s so
that X r · r s ≡ gm mod p. It could:

• Pick r and try to solve for s = DLogZ∗

p ,r
(gmX−r)

• Pick s and try to solve for r ...?

66 / 1

Forgery of ElGamal Signatures

Adversary has better luck if it picks m itself:

Adversary A(X)
r ← gX mod p; s ← (−r) mod (p − 1); m← s

return (m, (r , s))

Then:

X r · r s = X gX (gX)−gX = X gXg−gXX−gX = g−gX

=g−r = gm

so (r , s) is a valid forgery on m.

67 / 1

ElGamal with hashing

Let G = Z∗
p = 〈g〉 where p is a prime.

Signer keys: pk = X = gx ∈ Z∗
p and sk = x

$← Zp−1

H : {0, 1}∗ → Zp−1 a hash function.

Algorithm Sx(M)
m← H(M)

k
$← Z∗

p−1

r ← gk mod p

s ← (m − xr) · k−1 mod (p − 1)
return (r , s)

Algorithm VX (M, (r , s))
m← H(M)
if (r /∈ G or s /∈ Zp−1)

then return 0
if (X r · r s ≡ gm mod p)

then return 1
else return 0

68 / 1

ElGamal with hashing

Let G = Z∗
p = 〈g〉 where p is a prime.

Signer keys: pk = X = gx ∈ Z∗
p and sk = x

$← Zp−1

H : {0, 1}∗ → Zp−1 a hash function.

Algorithm Sx(M)
m← H(M)

k
$← Z∗

p−1

r ← gk mod p

s ← (m − xr) · k−1 mod (p − 1)
return (r , s)

Algorithm VX (M, (r , s))
m← H(M)
if (r /∈ G or s /∈ Zp−1)

then return 0
if (X r · r s ≡ gm mod p)

then return 1
else return 0

Requirements on H:

• Collision-resistant

• One-way to prevent previous attack

68 / 1

DSA

Let p be a 1024-bit prime. For DSA, let q be a 160-bit prime dividing
p − 1.

Scheme signing cost verification cost signature size

ElGamal 1 1024-bit exp 1 1024-bit exp 2048 bits

DSA 1 160-bit exp 1 160-bit exp 320 bits

By a “e-bit exp” we mean an operation a, n 7→ an mod p where a ∈ Z∗
p

and n is an e-bit integer. A 1024-bit exponentiation is more costly than
a 160-bit exponentiation by a factor of 1024/160 ≈ 6.4.

DSA is in FIPS 186.

69 / 1

DSA

• Fix primes p, q such that q divides p − 1

• Let G = Z∗
p = 〈h〉 and g = h(p−1)/q so that g ∈ G has order q

• H: {0, 1}∗ → Zq a hash function

• Signer keys: pk = X = gx ∈ Z∗
p and sk = x

$← Zq

Algorithm Sx(M)
m← H(M)

k
$
← Z∗

q

r ← (gk mod p) mod q

s ← (m + xr) · k−1 mod q

return (r , s)

Algorithm VX (M, (r , s))
m← H(M)
w ← s−1 mod q

u1 ← mw mod q

u2 ← rw mod q

v ← (gu1X u2 mod p) mod q

if (v = r) then return 1
else return 0

Details: Signature is regenerated if s = 0.
70 / 1

Discussion

DSA as shown works only over the group of integers modulo a prime,
but there is also a version ECDSA of it for elliptic curve groups.

In ElGamal and DSA/ECDSA, the expensive part of signing, namely the
exponentiation, can be done off-line.

No proof that ElGamal or DSA is UF-CMA under a standard
assumption (DL, CDH, ...) is known, even if H is a RO. Proofs are
known for variants.

71 / 1

Schnorr Signatures

The Schnorr scheme works in an arbitrary (prime-order) group. When
implemented in a 160-bit elliptic curve group, it is as efficient as
ECDSA. It can be proven UF-CMA in the random oracle model under
the discrete log assumption [PS,AABN]. The security reduction,
however, is quite loose.

72 / 1

Schnorr Signatures

• Let G = 〈g〉 be a cyclic group of prime order p

• H: {0, 1}∗ → Zp a hash function

• Signer keys: pk = X = gx ∈ G and sk = x
$← Zp

Algorithm Sx(M)

r
$← Zp

R ← g r

c ← H(R‖M)
a← xc + r mod p

return (R , a)

Algorithm VX (M, (R , a))
if R 6∈ G then return 0
c ← H(R‖M)
if ga = RX c then return 1
else return 0

73 / 1

Randomization in signatures

We have seen many randomized signature schemes: PSS, ElGamal,
DSA/ECDSA, Schnorr, ...

Re-using coins across different signatures is not secure, but there are
(other) ways to make these schemes deterministic without loss of
security.

74 / 1

