
Dan Boneh

Public Key Encryption
from trapdoor permutations

Public key encryption:
definitions and security

Online Cryptography Course Dan Boneh

Dan Boneh

Public Key Encryption
from trapdoor permutations

PKCS 1

Online Cryptography Course Dan Boneh

Dan Boneh

RSA encryption in practice

Never use textbook RSA.

RSA in practice (since ISO standard is not often used) :

Main questions:
– How should the preprocessing be done?
– Can we argue about security of resulting system?

msg
key

Preprocessing

cip
h

ertext

RSA

Dan Boneh

PKCS1 v1.5

PKCS1 mode 2: (encryption)

• Resulting value is RSA encrypted

• Widely deployed, e.g. in HTTPS

02 random pad FF msg

RSA modulus size (e.g. 2048 bits)

16 bits

Dan Boneh

Attack on PKCS1 v1.5 (Bleichenbacher 1998)

PKCS1 used in HTTPS:

 attacker can test if 16 MSBs of plaintext = ’02’

Chosen-ciphertext attack: to decrypt a given ciphertext c do:

– Choose r  ZN. Compute c’ ⟵ rec = (r  PKCS1(m))
e

– Send c’ to web server and use response

AttackerWeb
Server

d

ciphertextc=

c

yes: continue
no: error

Is this
PKCS1?

02

Dan Boneh

Baby Bleichenbacher

Suppose N is N = 2n (an invalid RSA modulus). Then:

• Sending c reveals msb(x)

• Sending 2e⋅c = (2x)e in ZN reveals msb(2x mod N) = msb2(x)

• Sending 4e⋅c = (4x)e in ZN reveals msb(4x mod N) = msb3(x)

• … and so on to reveal all of x

AttackerWeb
Server

d

ciphertextc=

c

yes: continue
no: error

is msb=1?

1

compute x⟵cd in ZN

Dan Boneh

HTTPS Defense (RFC 5246)

Attacks discovered by Bleichenbacher and Klima et al. … can be
avoided by treating incorrectly formatted message blocks … in a
manner indistinguishable from correctly formatted RSA blocks.
In other words:

1. Generate a string R of 46 random bytes

2. Decrypt the message to recover the plaintext M

3. If the PKCS#1 padding is not correct

pre_master_secret = R

Dan Boneh

PKCS1 v2.0: OAEP
New preprocessing function: OAEP [BR94]

Thm [FOPS’01] : RSA is a trap-door permutation 
RSA-OAEP is CCA secure when H,G are random oracles

in practice: use SHA-256 for H and G

H+

G +

plaintext to encrypt with RSA

rand.msg 01 00..0

check pad
on decryption.
reject CT if invalid.

{0,1}n-1

Dan Boneh

OAEP Improvements
OAEP+: [Shoup’01]

 trap-door permutation F
F-OAEP+ is CCA secure when
H,G,W are random oracles.

SAEP+: [B’01]

RSA (e=3) is a trap-door perm 

RSA-SAEP+ is CCA secure when

H,W are random oracle.

r

H+

G +

m W(m,r)

r

H+

m W(m,r)

During decryption validate W(m,r) field.

How would you decrypt

an SAEP ciphertext ct ?

r

H+

m W(m,r)

RSA

ciphertext

(x,r) ⟵RSA-1(sk,ct) , (m,w) ⟵ x⨁H(r) , output m if w = W(m,r)

(x,r) ⟵RSA-1(sk,ct) , (m,w) ⟵ r⨁H(x) , output m if w = W(m,r)

(x,r) ⟵RSA-1(sk,ct) , (m,w) ⟵ x⨁H(r) , output m if r = W(m,x)

x r

Dan Boneh

Subtleties in implementing OAEP [M ’00]

OAEP-decrypt(ct):

error = 0;

if (RSA
-1

(ct) > 2
n-1)

{ error =1; goto exit; }

if (pad(OAEP
-1

(RSA
-1

(ct))) != “01000”)
{ error = 1; goto exit; }

Problem: timing information leaks type of error

 Attacker can decrypt any ciphertext

Lesson: Don’t implement RSA-OAEP yourself !

Dan Boneh

End of Segment

Dan Boneh

Public Key Encryption
from trapdoor permutations

Is RSA a one-way
function?

Online Cryptography Course Dan Boneh

Dan Boneh

Is RSA a one-way permutation?

To invert the RSA one-way func. (without d) attacker must compute:

x from c = xe (mod N).

How hard is computing e’th roots modulo N ??

Best known algorithm:

– Step 1: factor N (hard)

– Step 2: compute e’th roots modulo p and q (easy)

Dan Boneh

Shortcuts?

Must one factor N in order to compute e’th roots?

To prove no shortcut exists show a reduction:

– Efficient algorithm for e’th roots mod N

 efficient algorithm for factoring N.

– Oldest problem in public key cryptography.

Some evidence no reduction exists: (BV’98)

– “Algebraic” reduction  factoring is easy.

Dan Boneh

How not to improve RSA’s performance

To speed up RSA decryption use small private key d (d ≈ 2128)

cd = m (mod N)

Wiener’87: if d < N0.25 then RSA is insecure.

BD’98: if d < N0.292 then RSA is insecure (open: d < N0.5)

Insecure: priv. key d can be found from (N,e)

Dan Boneh

Wiener’s attack
Recall: ed = 1 (mod (N))   kZ : ed = k(N) + 1

(N) = N-p-q+1  |N − (N)|  p+q  3N

d  N0.25/3 

Continued fraction expansion of e/N gives k/d.

ed = 1 (mod k)  gcd(d,k)=1  can find d from k/d

Dan Boneh

End of Segment

Dan Boneh

Public Key Encryption
from trapdoor permutations

RSA in practice

Online Cryptography Course Dan Boneh

Dan Boneh

RSA With Low public exponent

To speed up RSA encryption use a small e: c = me (mod N)

• Minimum value: e=3 (gcd(e, (N)) = 1)

• Recommended value: e=65537=216+1

Encryption: 17 multiplications

Asymmetry of RSA: fast enc. / slow dec.

– ElGamal (next module): approx. same time for both.

Dan Boneh

Key lengths

Security of public key system should be comparable to security
of symmetric cipher:

RSA
Cipher key-size Modulus size

80 bits 1024 bits

128 bits 3072 bits

256 bits (AES) 15360 bits

Dan Boneh

Implementation attacks
Timing attack: [Kocher et al. 1997] , [BB’04]

The time it takes to compute cd (mod N) can expose d

Power attack: [Kocher et al. 1999)
The power consumption of a smartcard while
it is computing cd (mod N) can expose d.

Faults attack: [BDL’97]
A computer error during cd (mod N) can expose d.

A common defense:: check output. 10% slowdown.

Dan Boneh

An Example Fault Attack on RSA (CRT)

A common implementation of RSA decryption: x = cd in ZN

decrypt mod p: xp = cd in Zp

decrypt mod q: xq = cd in Zq

Suppose error occurs when computing xq , but no error in xp

Then: output is x’ where x’ = cd in Zp but x’ ≠ cd in Zq

⇒ (x’)e = c in Zp but (x’)e ≠ c in Zq ⇒ gcd((x’)e - c , N) = p

combine to get x = cd in ZN

Dan Boneh

RSA Key Generation Trouble [Heninger et al./Lenstra et al.]

OpenSSL RSA key generation (abstract):

Suppose poor entropy at startup:

• Same p will be generated by multiple devices, but different q

• N1 , N2 : RSA keys from different devices ⇒ gcd(N1,N2) = p

prng.seed(seed)

p = prng.generate_random_prime()

prng.add_randomness(bits)

q = prng.generate_random_prime()

N = p*q

Dan Boneh

RSA Key Generation Trouble [Heninger et al./Lenstra et al.]

Experiment: factors 0.4% of public HTTPS keys !!

Lesson:

– Make sure random number generator is properly
seeded when generating keys

Dan Boneh

Further reading

• Why chosen ciphertext security matters, V. Shoup, 1998

• Twenty years of attacks on the RSA cryptosystem,
D. Boneh, Notices of the AMS, 1999

• OAEP reconsidered, V. Shoup, Crypto 2001

• Key lengths, A. Lenstra, 2004

Dan Boneh

End of Segment

