Dan Boneh

Public Key Encryption from trapdoor permutations

Public key encryption: definitions and security

Public Key Encryption from trapdoor permutations

PKCS 1

RSA encryption in practice

Never use textbook RSA.

RSA in practice (since ISO standard is not often used) :

Main questions:

- How should the preprocessing be done?
- Can we argue about security of resulting system?

PKCS1 v1.5

PKCS1 mode 2: (encryption)

- Resulting value is RSA encrypted
- Widely deployed, e.g. in HTTPS

Attack on PKCS1 v1.5 (Bleichenbacher 1998)

PKCS1 used in HTTPS:

 \Rightarrow attacker can test if 16 MSBs of plaintext = '02'

Chosen-ciphertext attack: to decrypt a given ciphertext C do:

- Choose $r \in Z_N$. Compute $c' \leftarrow r^e \cdot c = (r \cdot PKCS1(m))^e$
- Send c' to web server and use response

C=

Baby Bleichenbacher

Suppose N is $N = 2^n$ (an invalid RSA modulus). Then:

- Sending c reveals msb(x)
- Sending 2^e·c = (2x)^e in Z_N reveals msb(2x mod N) = msb₂(x)
- Sending $4^{e} \cdot c = (4x)^{e}$ in Z_{N} reveals msb(4x mod N) = msb₃(x)
- ... and so on to reveal all of x

HTTPS Defense (RFC 5246)

Attacks discovered by Bleichenbacher and Klima et al. ... can be avoided by treating incorrectly formatted message blocks ... in a manner indistinguishable from correctly formatted RSA blocks. In other words:

- 1. Generate a string *R* of 46 random bytes
- 2. Decrypt the message to recover the plaintext M
- 3. If the PKCS#1 padding is not correct

pre_master_secret = R

PKCS1 v2.0: OAEP

New preprocessing function: OAEP [BR94]

Thm [FOPS'01] : RSA is a trap-door permutation \Rightarrow RSA-OAEP is CCA secure when H,G are random oracles

in practice: use SHA-256 for H and G

OAEP Improvements

OAEP+: [Shoup'01]

∀ trap-door permutation F
 F-OAEP+ is CCA secure when
 H,G,W are random oracles.

During decryption validate W(m,r) field.

<u>SAEP</u>+: [B'01]

RSA (e=3) is a trap-door perm \Rightarrow RSA-SAEP+ is CCA secure when H,W are *random oracle*.

How would you decrypt an SAEP ciphertext **ct** ?

○ $(x,r) \leftarrow RSA^{-1}(sk,ct)$, $(m,w) \leftarrow r \oplus H(x)$, output m if w = W(m,r)

○ $(x,r) \leftarrow RSA^{-1}(sk,ct)$, $(m,w) \leftarrow x \oplus H(r)$, output m if r = W(m,x)

Subtleties in implementing OAEP [M '00]

Problem: timing information leaks type of error \Rightarrow Attacker can decrypt any ciphertext

Lesson: Don't implement RSA-OAEP yourself !

End of Segment

Dan Boneh

Public Key Encryption from trapdoor permutations

Is RSA a one-way function?

Is RSA a one-way permutation?

To invert the RSA one-way func. (without d) attacker must compute:

x from $c = x^e \pmod{N}$.

How hard is computing e'th roots modulo N ??

Best known algorithm:

- Step 1: factor N (hard)
- Step 2: compute e'th roots modulo p and q (easy)

Shortcuts?

Must one factor N in order to compute e'th roots?

To prove no shortcut exists show a reduction:

Efficient algorithm for e'th roots mod N

 \Rightarrow efficient algorithm for factoring N.

- Oldest problem in public key cryptography.

Some evidence no reduction exists: (BV'98)

- "Algebraic" reduction \Rightarrow factoring is easy.

How **not** to improve RSA's performance

To speed up RSA decryption use small private key d ($d \approx 2^{128}$)

$$c^d = m \pmod{N}$$

Wiener'87: if $d < N^{0.25}$ then RSA is insecure.

BD'98: if $d < N^{0.292}$ then RSA is insecure (open: $d < N^{0.5}$)

Insecure: priv. key d can be found from (N,e)

Wiener's attack

Recall: $e \cdot d = 1 \pmod{\varphi(N)} \implies \exists k \in \mathbb{Z}$: $e \cdot d = k \cdot \varphi(N) + 1$ $\left| \frac{\varphi}{\varphi(N)} - \frac{1}{d} \right| = \frac{1}{d \cdot \varphi(N)} \le \frac{1}{\sqrt{N}}$

$$\begin{split} \varphi(\mathsf{N}) = \mathsf{N} - \mathsf{p} - \mathsf{q} + 1 &\Rightarrow |\mathsf{N} - \varphi(\mathsf{N})| \leq \mathsf{p} + \mathsf{q} \leq 3\sqrt{\mathsf{N}} \\ d \leq \mathsf{N}^{0.25}/3 &\Rightarrow \left| \overset{\mathfrak{C}}{\mathsf{N}} - \overset{\kappa}{\mathscr{C}} \right| \leq \left| \overset{\mathfrak{C}}{\mathsf{N}} - \overset{\mathfrak{C}}{\mathscr{Q}(\mathsf{N})} \right| + \left| \overset{\mathfrak{C}}{\mathscr{Q}(\mathsf{N})} - \overset{\kappa}{\mathscr{L}} \right| \leq \frac{1}{2\sqrt{2}} \\ \leq \overset{\mathfrak{C}}{\mathsf{N}} - \overset{\mathfrak{C}}{\mathscr{Q}(\mathsf{N})} \leq \overset{\mathfrak{C}}{\mathfrak{R}} \leq \frac{1}{2\sqrt{2}} - \overset{\mathfrak{C}}{\mathfrak{R}} \\ \Rightarrow & \mathsf{Continued fraction expansion of e/\mathsf{N} gives k/d.} \\ e \cdot d = 1 \pmod{\mathsf{k}} \Rightarrow \gcd(\mathsf{d},\mathsf{k}) = 1 \Rightarrow \mathsf{can find d from k/d} \end{split}$$

End of Segment

Public Key Encryption from trapdoor permutations

RSA in practice

RSA With Low public exponent

To speed up RSA encryption use a small $e: c = m^e \pmod{N}$

- Minimum value: **e=3** (gcd(e, $\phi(N)$) = 1)
- Recommended value: **e=65537=2**¹⁶**+1**

Encryption: 17 multiplications

<u>Asymmetry of RSA:</u> fast enc. / slow dec.

- ElGamal (next module): approx. same time for both.

Key lengths

Security of public key system should be comparable to security of symmetric cipher:

	KSA
<u>Cipher key-size</u>	<u>Modulus size</u>
80 bits	1024 bits
128 bits	3072 bits
256 bits (AES)	15360 bits

Implementation attacks

Timing attack: [Kocher et al. 1997] , [BB'04] The time it takes to compute c^d (mod N) can expose d

Power attack: [Kocher et al. 1999) The power consumption of a smartcard while it is computing c^d (mod N) can expose d.

Faults attack: [BDL'97] A computer error during c^d (mod N) can expose d.

A common defense: check output. 10% slowdown.

An Example Fault Attack on RSA (CRT)

A common implementation of RSA decryption: $x = c^d$ in Z_N

decrypt mod p:
$$x_p = c^d$$
 in Z_p
decrypt mod q: $x_q = c^d$ in Z_q combine to get $x = c^d$ in Z_N

Suppose error occurs when computing x_q , but no error in x_p

Then: output is x' where
$$x' = c^d$$
 in Z_p but $x' \neq c^d$ in Z_q
 $\Rightarrow (x')^e = c$ in Z_p but $(x')^e \neq c$ in $Z_q \Rightarrow gcd((x')^e - c, N) = p$

RSA Key Generation Trouble [Heninger et al./Lenstra et al.]

OpenSSL RSA key generation (abstract):

prng.seed(seed)
p = prng.generate_random_prime()
prng.add_randomness(bits)
q = prng.generate_random_prime()
N = p*q

Suppose poor entropy at startup:

- Same p will be generated by multiple devices, but different q
- N_1 , N_2 : RSA keys from different devices \Rightarrow gcd(N_1 , N_2) = p

RSA Key Generation Trouble [Heninger et al./Lenstra et al.]

Experiment: factors 0.4% of public HTTPS keys !!

Lesson:

Make sure random number generator is properly seeded when generating keys

Further reading

• Why chosen ciphertext security matters, V. Shoup, 1998

Twenty years of attacks on the RSA cryptosystem,
 D. Boneh, Notices of the AMS, 1999

• OAEP reconsidered, V. Shoup, Crypto 2001

• Key lengths, A. Lenstra, 2004

End of Segment