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RSA encryption in practice

Never use textbook RSA.

RSA in practice   (since ISO standard is not often used) :

Main questions:
– How should the preprocessing be done?
– Can we argue about security of resulting system?

msg
key

Preprocessing

cip
h

ertext

RSA
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PKCS1 v1.5

PKCS1 mode 2: (encryption)

• Resulting value is RSA encrypted

• Widely deployed, e.g.  in HTTPS

02 random pad FF msg

RSA modulus size  (e.g. 2048 bits)

16 bits
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Attack on PKCS1 v1.5    (Bleichenbacher 1998)

PKCS1 used in HTTPS:

 attacker can test if 16 MSBs of plaintext = ’02’

Chosen-ciphertext attack:  to decrypt a given ciphertext c do:

– Choose  r  ZN.     Compute  c’ ⟵ rec = (r  PKCS1(m))
e

– Send  c’  to web server and use response

AttackerWeb
Server

d

ciphertextc=

c

yes: continue
no: error

Is this
PKCS1?

02
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Baby Bleichenbacher

Suppose N is   N = 2n (an invalid RSA modulus).    Then:

• Sending    c    reveals    msb( x )

• Sending   2e⋅c = (2x)e  in ZN reveals   msb(2x mod N) = msb2(x)

• Sending   4e⋅c = (4x)e in ZN reveals   msb(4x mod N) = msb3(x)

• … and so on to reveal all of x

AttackerWeb
Server

d

ciphertextc=

c

yes: continue
no: error

is msb=1?

1

compute  x⟵cd in ZN
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HTTPS Defense   (RFC 5246)

Attacks discovered by Bleichenbacher and Klima et al. … can be 
avoided by treating incorrectly formatted message blocks … in a 
manner indistinguishable from correctly formatted RSA blocks.  
In other words:

1. Generate a string R of 46 random bytes

2. Decrypt the message to recover the plaintext M

3. If the PKCS#1 padding is not correct

pre_master_secret =  R
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PKCS1 v2.0:   OAEP
New preprocessing function:  OAEP   [BR94]

Thm [FOPS’01] : RSA is a trap-door permutation  
RSA-OAEP is CCA secure when  H,G  are random oracles

in practice:  use SHA-256 for H and G

H+

G +

plaintext to encrypt with RSA

rand.msg 01 00..0

check pad
on decryption.
reject CT if invalid.

{0,1}n-1
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OAEP Improvements
OAEP+:   [Shoup’01]

 trap-door permutation F 
F-OAEP+ is CCA secure when  
H,G,W  are random oracles.

SAEP+:  [B’01]

RSA (e=3) is a trap-door perm 

RSA-SAEP+ is CCA secure when 

H,W  are random oracle.

r

H+

G +

m W(m,r)

r

H+

m W(m,r)

During decryption validate  W(m,r) field.



How would you decrypt 

an SAEP ciphertext ct ?

r

H+

m W(m,r)

RSA

ciphertext

(x,r) ⟵RSA-1(sk,ct)  ,     (m,w) ⟵ x⨁H(r)  ,   output m if w = W(m,r)

(x,r) ⟵RSA-1(sk,ct)  ,     (m,w) ⟵ r⨁H(x)  ,   output m if w = W(m,r)

(x,r) ⟵RSA-1(sk,ct)  ,     (m,w) ⟵ x⨁H(r)  ,   output m if r = W(m,x)

x r
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Subtleties in implementing OAEP    [M ’00]

OAEP-decrypt(ct):

error = 0;

if  ( RSA
-1

(ct) > 2
n-1 )

{ error =1;  goto exit; }

if  ( pad(OAEP
-1

(RSA
-1

(ct))) != “01000” )
{ error = 1;  goto exit; }

Problem:  timing information leaks type of error

 Attacker can decrypt any ciphertext

Lesson:  Don’t implement RSA-OAEP yourself !
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Is RSA a one-way permutation?

To invert the RSA one-way func. (without d) attacker must compute:

x from     c = xe (mod N).

How hard is computing  e’th roots modulo N  ??

Best known algorithm:   

– Step 1:  factor  N     (hard)

– Step 2:  compute e’th roots modulo  p  and  q     (easy)
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Shortcuts?

Must one factor N in order to compute e’th roots?

To prove no shortcut exists show a reduction:

– Efficient algorithm for e’th roots mod N

 efficient algorithm for factoring  N.

– Oldest problem in public key cryptography.

Some evidence no reduction exists: (BV’98)

– “Algebraic” reduction    factoring is easy.
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How not to improve RSA’s performance

To speed up RSA decryption use small private key  d     ( d ≈ 2128 )

cd = m  (mod N)

Wiener’87: if   d < N0.25 then RSA is insecure.

BD’98: if   d < N0.292 then RSA is insecure (open:  d < N0.5 )

Insecure: priv. key  d  can be found from  (N,e)
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Wiener’s attack
Recall: ed = 1  (mod (N) )      kZ :     ed = k(N) + 1 

(N) = N-p-q+1     |N − (N)|   p+q  3N

d  N0.25/3    

Continued fraction expansion of  e/N  gives  k/d.

ed = 1 (mod k)    gcd(d,k)=1     can find d from k/d
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RSA With Low public exponent

To speed up RSA encryption use a small   e:        c = me (mod N)

• Minimum value:   e=3 ( gcd(e, (N) ) = 1)

• Recommended value:   e=65537=216+1

Encryption:  17 multiplications

Asymmetry of RSA: fast enc. / slow dec.

– ElGamal (next module):   approx. same time for both.
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Key lengths

Security of public key system should be comparable to security 
of symmetric cipher:

RSA
Cipher key-size Modulus size

80 bits 1024 bits

128 bits 3072 bits

256 bits (AES) 15360 bits 
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Implementation attacks
Timing attack:  [Kocher et al. 1997]   ,   [BB’04]

The time it takes to compute   cd (mod N)    can expose   d

Power attack:  [Kocher  et al. 1999)
The power consumption of a smartcard while 
it is computing  cd (mod N)   can expose  d.

Faults attack:  [BDL’97]
A computer error during   cd (mod N)   can expose   d.   

A common defense:: check output. 10% slowdown.
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An Example Fault Attack on RSA  (CRT)

A common implementation of RSA decryption:     x = cd in  ZN

decrypt mod p:     xp = cd in  Zp

decrypt mod q:     xq = cd in  Zq

Suppose error occurs when computing xq ,   but no error in xp

Then:    output is  x’   where     x’ = cd in  Zp but    x’ ≠ cd in  Zq

⇒ (x’)e = c  in Zp but (x’)e ≠ c  in Zq ⇒ gcd( (x’)e - c , N) = p

combine to get  x = cd in  ZN
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RSA Key Generation Trouble [Heninger et al./Lenstra et al.]

OpenSSL RSA key generation  (abstract):

Suppose poor entropy at startup:

• Same p will be generated by multiple devices, but different q

• N1 , N2 :   RSA keys from different devices   ⇒ gcd(N1,N2) = p

prng.seed(seed)

p = prng.generate_random_prime()

prng.add_randomness(bits)

q = prng.generate_random_prime()

N = p*q
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RSA Key Generation Trouble [Heninger et al./Lenstra et al.]

Experiment:      factors  0.4% of public HTTPS keys !!

Lesson:       

– Make sure random number generator is properly
seeded when generating keys
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Further reading

• Why chosen ciphertext security matters,  V. Shoup,  1998

• Twenty years of attacks on the RSA cryptosystem,  
D. Boneh,  Notices of the AMS,  1999

• OAEP reconsidered,  V. Shoup,  Crypto 2001 

• Key lengths,  A. Lenstra, 2004
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