
Dan Boneh

Number Theory

18733: Applied Cryptography Anupam Datta (CMU)

Dan Boneh

Intro. Number Theory

Modular e’th roots

Online Cryptography Course Dan Boneh

Dan Boneh

Modular e’th roots

We know how to solve modular linear equations:

a⋅x + b = 0 in ZN Solution: x = −b⋅a-1 in ZN

What about higher degree polynomials?

Example: let p be a prime and c∈Zp . Can we solve:

x2 – c = 0 , y3 – c = 0 , z37 – c = 0 in Zp

Dan Boneh

Modular e’th roots

Let p be a prime and c∈Zp .

Def: x∈Zp s.t. xe = c in Zp is called an e’th root of c .

Examples: 71/3 = 6 in

31/2 = 5 in

11/3 = 1 in

21/2 does not exist in

Dan Boneh

The easy case

When does c1/e in Zp exist? Can we compute it efficiently?

The easy case: suppose gcd(e , p-1) = 1

Then for all c in (Zp)*: c1/e exists in Zp and is easy to find.

Proof: let d = e-1 in Zp-1 . Then

d⋅e = 1 in Zp-1 ⇒

Dan Boneh

The case e=2: square roots

If p is an odd prime then gcd(2, p-1) ≠ 1

Fact: in , x ⟶ x2 is a 2-to-1 function

Example: in :

Def: x in is a quadratic residue (Q.R.) if it has a square root in

p odd prime ⇒ the # of Q.R. in is (p-1)/2 + 1

1 10

1

2 9

4

3 8

9

4 7

5

5 6

3

x −x

x2

Dan Boneh

Euler’s theorem

Thm: x in (Zp)* is a Q.R. ⟺ x(p-1)/2 = 1 in Zp (p odd prime)

Example:

Note: x≠0 ⇒ x(p-1)/2 = (xp-1)1/2
= 11/2 ∈ { 1, -1 } in Zp

Def: x(p-1)/2 is called the Legendre Symbol of x over p (1798)

in : 15, 25, 35, 45, 55, 65, 75, 85, 95, 105

= 1 -1 1 1 1, -1, -1, -1, 1, -1

Dan Boneh

Computing square roots mod p

Suppose p = 3 (mod 4)

Lemma: if c∈(Zp)* is Q.R. then √c = c(p+1)/4 in Zp

Proof:

When p = 1 (mod 4), can also be done efficiently, but a bit harder

run time ≈ O(log3 p)

Dan Boneh

Solving quadratic equations mod p

Solve: a⋅x2 + b⋅x + c = 0 in Zp

Solution: x = (-b ± √b2 – 4⋅a⋅c) / 2a in Zp

• Find (2a)-1 in Zp using extended Euclid.

• Find square root of b2 – 4⋅a⋅c in Zp (if one exists)

using a square root algorithm

Dan Boneh

Computing e’th roots mod N ??

Let N be a composite number and e>1

When does c1/e in ZN exist? Can we compute it efficiently?

Answering these questions requires the factorization of N

(as far as we know)

Dan Boneh

End of Segment

Dan Boneh

Intro. Number Theory

Arithmetic algorithms

Online Cryptography Course Dan Boneh

Dan Boneh

Representing bignums

Representing an n-bit integer (e.g. n=2048) on a 64-bit machine

Note: some processors have 128-bit registers (or more)
and support multiplication on them

32 bits 32 bits 32 bits 32 bits⋯
n/32 blocks

Dan Boneh

Arithmetic

Given: two n-bit integers

• Addition and subtraction: linear time O(n)

• Multiplication: naively O(n2). Karatsuba (1960): O(n1.585)

Best (asymptotic) algorithm: about O(n⋅log n).

• Division with remainder: O(n2).

Dan Boneh

Exponentiation

Finite cyclic group G (for example G =)

Goal: given g in G and x compute gx

Example: suppose x = 53 = (110101)2 = 32+16+4+1

Then: g53 = g32+16+4+1 = g32⋅g16⋅g4⋅g1

g⟶ g2⟶ g4⟶ g8⟶ g16⟶ g32 g53

Dan Boneh

The repeated squaring alg.

Input: g in G and x>0 ; Output: gx

write x = (xn xn-1 … x2 x1 x0)2

y ⟵ g , z ⟵ 1

for i = 0 to n do:

if (x[i] == 1): z ⟵ z⋅y

y ⟵ y2

output z

example: g53

y z
g2 g

g4 g

g8 g5

g16 g5

g32 g21

g64 g53

Dan Boneh

Running times

Given n-bit int. N:

• Addition and subtraction in ZN: linear time T+ = O(n)

• Modular multiplication in ZN: naively T× = O(n2)

• Modular exponentiation in ZN (gx):

O((log x)⋅T×) ≤ O((log x)⋅n2) ≤ O(n3)

Dan Boneh

End of Segment

Dan Boneh

Intro. Number Theory

Intractable problems

Online Cryptography Course Dan Boneh

Dan Boneh

Easy problems

• Given composite N and x in ZN find x-1 in ZN

• Given prime p and polynomial f(x) in Zp[x]

find x in Zp s.t. f(x) = 0 in Zp (if one exists)

Running time is linear in deg(f) .

… but many problems are difficult

Dan Boneh

Intractable problems with primes

Fix a prime p>2 and g in (Zp)* of order q.

Consider the function: x ⟼ gx in Zp

Now, consider the inverse function:

Dlogg (gx) = x where x in {0, …, q-2}

Example: in : 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Dlog2(⋅) : 0, 1, 8, 2, 4, 9, 7, 3, 6, 5

Dan Boneh

DLOG: more generally

Let G be a finite cyclic group and g a generator of G

G = { 1 , g , g2 , g3 , … , gq-1 } (q is called the order of G)

Def: We say that DLOG is hard in G if for all efficient alg. A:

Pr g⟵G, x ⟵Zq
[A(G, q, g, gx) = x] < negligible

Example candidates:

(1) (Zp)* for large p, (2) Elliptic curve groups mod p

Dan Boneh

Computing Dlog in (Zp)*
(n-bit prime p)

Best known algorithm (GNFS): run time exp()

cipher key size modulus size

80 bits 1024 bits

128 bits 3072 bits

256 bits (AES) 15360 bits

As a result: slow transition away from (mod p) to elliptic curves

Elliptic Curve
group size

160 bits

256 bits

512 bits

Dan Boneh

An application: collision resistance

Choose a group G where Dlog is hard (e.g. (Zp)* for large p)

Let q = |G| be a prime. Choose generators g, h of G

For x,y ∈ {1,…,q} define H(x,y) = gx ⋅ hy in G

Lemma: finding collision for H(.,.) is as hard as computing Dlogg(h)

Proof: Suppose we are given a collision H(x0,y0) = H(x1,y1)

then gx0⋅hy0 = gx1⋅hy1 ⇒ gx0-x1 = hy1-y0 ⇒ h = g x0-x1/y1-y0

Dan Boneh

Intractable problems with composites

Consider the set of integers: (e.g. for n=1024)

Problem 1: Factor a random N in (e.g. for n=1024)

Problem 2: Given a polynomial f(x) where degree(f) > 1

and a random N in

find x in s.t. f(x) = 0 in

:= { N = p⋅q where p,q are n-bit primes }

Dan Boneh

The factoring problem

Gauss (1805):

Best known alg. (NFS): run time exp() for n-bit integer

Current world record: RSA-768 (232 digits)

• Work: two years on hundreds of machines

• Factoring a 1024-bit integer: about 1000 times harder

⇒ likely possible this decade

“The problem of distinguishing prime numbers from
composite numbers and of resolving the latter into
their prime factors is known to be one of the most
important and useful in arithmetic.”

Dan Boneh

Further reading

• A Computational Introduction to Number Theory and Algebra,
V. Shoup, 2008 (V2), Chapter 1-4, 11, 12

Available at //shoup.net/ntb/ntb-v2.pdf

Dan Boneh

End of Segment

