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Modular e’th roots

We know how to solve modular linear equations:

a⋅x + b = 0    in ZN Solution:      x = −b⋅a-1 in ZN

What about higher degree polynomials?

Example:     let  p  be a prime and   c∈Zp .       Can we solve:

x2 – c = 0    ,      y3 – c = 0    ,    z37 – c = 0     in   Zp



Dan Boneh

Modular e’th roots

Let  p  be a prime and  c∈Zp .

Def:     x∈Zp s.t. xe = c  in Zp is called an  e’th root of c .

Examples:  71/3 =   6    in    

31/2 =   5    in    

11/3 =   1     in    

21/2 does not exist in 
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The easy case

When does   c1/e in  Zp exist?      Can we compute it efficiently?

The easy case:     suppose    gcd( e , p-1 ) = 1

Then for all  c  in (Zp)*:      c1/e exists in  Zp and is easy to find.

Proof:      let   d = e-1 in  Zp-1 .      Then

d⋅e = 1 in Zp-1 ⇒
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The case   e=2:   square roots

If p is an odd prime then   gcd( 2, p-1) ≠ 1

Fact: in  ,    x ⟶ x2 is a 2-to-1 function

Example:   in          :

Def:  x in        is a quadratic residue (Q.R.) if it has a square root in

p odd prime  ⇒ the # of Q.R. in       is   (p-1)/2 + 1 

1 10

1

2 9

4

3 8
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x −x
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Euler’s theorem

Thm: x in (Zp)* is a Q.R.      ⟺ x(p-1)/2 = 1  in Zp (p odd prime)

Example:

Note:    x≠0    ⇒ x(p-1)/2  =  (xp-1)1/2 
=  11/2  ∈ { 1, -1 }     in   Zp

Def:    x(p-1)/2 is called the Legendre Symbol of x over p    (1798)

in           :     15,   25,   35,  45,  55,  65,  75,  85,  95,  105

= 1    -1     1     1    1,   -1,  -1,  -1,   1,    -1     
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Computing square roots mod p

Suppose   p = 3  (mod 4)

Lemma:    if    c∈(Zp)*  is  Q.R.   then     √c  =   c(p+1)/4 in Zp

Proof: 

When   p = 1 (mod 4),   can also be done efficiently, but a bit harder

run time ≈ O(log3 p)
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Solving quadratic equations mod p

Solve:         a⋅x2 + b⋅x + c = 0     in  Zp

Solution:      x =    (-b ± √b2 – 4⋅a⋅c   )  /   2a     in   Zp

• Find  (2a)-1 in Zp using extended Euclid.      

• Find square root of    b2 – 4⋅a⋅c in Zp (if one exists)

using a square root algorithm
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Computing e’th roots mod N  ??

Let  N  be a composite number and e>1

When does   c1/e in  ZN exist?      Can we compute it efficiently?

Answering these questions requires the factorization of  N

(as far as we know)
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Representing bignums

Representing an n-bit integer  (e.g.  n=2048) on a 64-bit machine

Note:  some processors have 128-bit registers (or more)
and support multiplication on them

32 bits 32 bits 32 bits 32 bits⋯
n/32   blocks
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Arithmetic

Given:   two n-bit integers

• Addition and subtraction:     linear time     O(n)

• Multiplication:   naively  O(n2).       Karatsuba (1960):   O(n1.585)

Best (asymptotic) algorithm:      about   O(n⋅log n). 

• Division with remainder:    O(n2). 
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Exponentiation

Finite cyclic group  G    (for example  G =        ) 

Goal:    given   g in G   and   x   compute     gx

Example:   suppose  x = 53 = (110101)2 = 32+16+4+1

Then:    g53 = g32+16+4+1 = g32⋅g16⋅g4⋅g1

g⟶ g2⟶ g4⟶ g8⟶ g16⟶ g32 g53
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The repeated squaring alg.

Input:   g in G     and   x>0      ;      Output:   gx

write    x = (xn xn-1 … x2 x1 x0)2

y ⟵ g    ,  z ⟵ 1

for i = 0 to n do:

if  (x[i] == 1):      z ⟵ z⋅y

y ⟵ y2

output  z

example:   g53

y z
g2 g

g4 g

g8             g5

g16          g5

g32 g21

g64 g53
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Running times

Given  n-bit int.  N:

• Addition and subtraction in ZN:     linear time     T+ = O(n)

• Modular multiplication in ZN:   naively  T× = O(n2)

• Modular exponentiation in ZN ( gx ):       

O( (log x)⋅T×) ≤   O( (log x)⋅n2) ≤    O( n3 )
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Easy problems

• Given composite N and   x in ZN find   x-1 in ZN 

• Given prime p and polynomial  f(x) in Zp[x]  

find  x in Zp s.t. f(x) = 0  in Zp (if one exists)

Running time is linear in deg(f) .

…  but many problems are difficult
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Intractable problems with primes

Fix a prime p>2  and  g in (Zp)* of order  q.         

Consider the function:      x  ⟼ gx in  Zp

Now, consider the inverse function:

Dlogg (gx)  =  x      where   x in  {0, …, q-2}

Example:    in           :        1,    2,    3,    4,    5,    6,    7,    8,    9,    10

Dlog2(⋅) :       0,    1,    8,    2,    4,    9,    7,    3,    6,     5
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DLOG:   more generally

Let  G be a finite cyclic group  and  g a generator of G 

G =  { 1 , g , g2 , g3 ,   …  ,  gq-1 } ( q is called the order of G )

Def:  We say that DLOG is hard in G if for all efficient alg. A:

Pr g⟵G, x ⟵Zq
[ A( G, q,  g, gx ) = x ] <  negligible

Example candidates:

(1)    (Zp)* for large p,         (2)  Elliptic curve groups mod p
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Computing Dlog in (Zp)*
(n-bit prime p) 

Best known algorithm (GNFS):        run time     exp(              )

cipher key size modulus size

80 bits 1024 bits

128 bits 3072 bits

256 bits (AES) 15360 bits 

As a result:    slow transition away from (mod p) to elliptic curves

Elliptic Curve
group size

160 bits

256 bits

512 bits
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An application:  collision resistance

Choose a group G where Dlog is hard   (e.g.  (Zp)* for large p)

Let  q = |G| be a prime.   Choose generators  g, h  of G 

For  x,y ∈ {1,…,q}      define      H(x,y) = gx ⋅ hy in G

Lemma: finding collision for H(.,.) is as hard as computing Dlogg(h)

Proof:   Suppose we are given a collision   H(x0,y0) = H(x1,y1)

then    gx0⋅hy0  = gx1⋅hy1  ⇒ gx0-x1  = hy1-y0 ⇒ h = g x0-x1/y1-y0



Dan Boneh

Intractable problems with composites

Consider the set of integers:    (e.g. for n=1024)

Problem 1:   Factor a random  N in                       (e.g. for n=1024)

Problem 2:   Given a polynomial  f(x) where degree(f) > 1

and a random  N in    

find  x in s.t. f(x) = 0    in 

:=   { N = p⋅q where  p,q are n-bit primes }
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The factoring problem

Gauss (1805):

Best known alg.   (NFS):      run time   exp(               )   for n-bit integer

Current world record:     RSA-768    (232 digits) 

• Work:  two years on hundreds of machines

• Factoring a 1024-bit integer:    about 1000 times harder

⇒ likely possible this decade

“The problem of distinguishing prime numbers from 
composite numbers and of resolving the latter into 
their prime factors is known to be one of the most 
important and useful in arithmetic.”
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Further reading

• A Computational Introduction to Number Theory and Algebra,
V. Shoup,  2008    (V2),     Chapter 1-4, 11, 12

Available at      //shoup.net/ntb/ntb-v2.pdf
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