

Number Theory

Intro. Number Theory

Notation

Background

We will use a bit of number theory to construct:

- Key exchange protocols
- Digital signatures
- Public-key encryption

This module: crash course on relevant concepts

More info: read parts of Shoup's book referenced at end of module

Notation

From here on:

- N denotes a positive integer.
- p denote a prime.

Notation:
$$M = \{q_1, 2, ..., N-1\}$$

Can do addition and multiplication modulo N

Modular arithmetic

Examples: let N = 12

9 + 8 = 5 in \mathbb{Z}_{12} $5 \times 7 = 11$ in \mathbb{Z}_{12} 5 - 7 = 10 in \mathbb{Z}_{12}

Arithmetic in \mathbb{Z}_N works as you expect, e.g $x \cdot (y+z) = x \cdot y + x \cdot z$ in \mathbb{Z}_N

Greatest common divisor

<u>Def</u>: For ints. x,y: gcd(x, y) is the greatest common divisor of x,y</u>

Example:
$$gcd(12, 18) = 6$$
 $2 \times 12 - 1 \times 18 = 6$

<u>Fact</u>: for all ints. x,y there exist ints. a,b such that a·x + b·y = gcd(x,y) a,b can be found efficiently using the extended Euclid alg.

If gcd(x,y)=1 we say that x and y are relatively prime

Modular inversion

Over the rationals, inverse of 2 is $\frac{1}{2}$. What about \mathbb{Z}_N ?

<u>Def</u>: The inverse of x in \mathbb{Z}_N is an element y in \mathbb{Z}_N s.t. $\times \cdot \gamma \neq \cdot \wedge \mathbb{Z}_N$

y is denoted x^{-1} .

Example: let N be an odd integer. The inverse of 2 in \mathbb{Z}_N is $\frac{N+1}{2}$

$$2 \cdot \binom{N+1}{2} = N+1 = 1$$
 in \mathbb{Z}_N

Modular inversion

Which elements have an inverse in \mathbb{Z}_N ?

Lemma: x in \mathbb{Z}_N has an inverse if and only if gcd(x,N) = 1Proof:

$$gcd(x,N)=1 \implies \exists a,b: a \cdot x + b \cdot N = 1 \implies \mathcal{A} \cdot \chi = 1$$
 in \mathbb{Z}_{N}
 $\implies \chi^{-1} = q$ in \mathbb{Z}_{N}

 $gcd(x,N) > 1 \implies \forall a: gcd(a \cdot x, N) > 1 \implies a \cdot x \neq 1 \text{ in } \mathbb{Z}_N$ $gcd(x,N) = 2 \implies \forall a: a \cdot x \text{ is even} \implies a \cdot x \neq b \cdot N + 1$

More notation

Def:
$$\mathbb{Z}_N^* = (\text{set of invertible elements in } \mathbb{Z}_N) =$$

= { x \in \mathbb{Z}_N : gcd(x,N) = 1 }

Examples:

1. for prime p,
$$\mathbb{Z}_p^* = \mathbb{Z}_p \setminus \{0\} = \{1, 2, \dots, p-1\}$$

2. $\mathbb{Z}_{12}^* = \{1, 5, 7, 11\}$

For x in \mathbb{Z}_N^* , can find x⁻¹ using extended Euclid algorithm.

Solving modular linear equations

Solve: $\mathbf{a} \cdot \mathbf{x} + \mathbf{b} = \mathbf{0}$ in \mathbb{Z}_N

Solution: $\mathbf{x} = -\mathbf{b} \cdot \mathbf{a}^{-1}$ in \mathbb{Z}_N

Find a^{-1} in \mathbb{Z}_N using extended Euclid. Run time: $O(\log^2 N)$

What about modular quadratic equations? next segments

End of Segment

Intro. Number Theory

Fermat and Euler

Review

N denotes an n-bit positive integer. p denotes a prime.

•
$$Z_N = \{0, 1, ..., N-1\}$$

•
$$(Z_N)^*$$
 = (set of invertible elements in Z_N) =
= { $x \in Z_N$: $gcd(x,N) = 1$ }

Can find inverses efficiently using Euclid alg.: time = $O(n^2)$

Fermat's theorem (1640)

<u>Thm</u>: Let p be a prime

$$\forall x \in (Z_p)^*$$
: $x^{p-1} = 1$ in Z_p

Example: p=5. $3^4 = 81 = 1$ in Z_5

So:
$$x \in (Z_p)^* \implies x \cdot x^{p-2} = 1 \implies x^{-1} = x^{p-2}$$
 in Z_p

another way to compute inverses, but less efficient than Euclid

Application: generating random primes

Suppose we want to generate a large random prime

say, prime p of length 1024 bits (i.e. $p \approx 2^{1024}$)

Step 1:choose a random integer $p \in [2^{1024}, 2^{1025}-1]$ Step 2:test if $2^{p-1} = 1$ in Z_p If so, output p and stop.If not, goto step 1.

Simple algorithm (not the best). **Pr[p not prime] < 2**-60

The structure of $(Z_p)^*$

<u>Thm</u> (Euler): $(Z_p)^*$ is a **cyclic group**, that is

$$\exists g \in (Z_p)^*$$
 such that $\{1, g, g^2, g^3, ..., g^{p-2}\} = (Z_p)^*$

g is called a <u>generator</u> of $(Z_p)^*$

Example: p=7. {1, 3, 3², 3³, 3⁴, 3⁵} = {1, 3, 2, 6, 4, 5} = $(Z_7)^*$

Not every elem. is a generator: $\{1, 2, 2^2, 2^3, 2^4, 2^5\} = \{1, 2, 4\}$

Order

For $g \in (Z_p)^*$ the set $\{1, g, g^2, g^3, ...\}$ is called the **group generated by g**, denoted <g>

<u>Def</u>: the order of $g \in (Z_p)^*$ is the size of $\langle g \rangle$

 $ord_{p}(g) = |\langle g \rangle| = (smallest a > 0 s.t. g^{a} = 1 in Z_{p})$

Examples: $ord_7(3) = 6$; $ord_7(2) = 3$; $ord_7(1) = 1$

<u>**Thm</u>** (Lagrange): $\forall g \in (Z_p)^*$: **ord**_p(g) divides p-1</u>

Euler's generalization of Fermat (1736)

<u>Def</u>: For an integer N define $\varphi(N) = |(Z_N)^*|$ (Euler's φ func.)

Examples:
$$\phi(12) = |\{1,5,7,11\}| = 4$$
; $\phi(p) = p-1$
For N=p·q: $\phi(N) = N-p-q+1 = (p-1)(q-1)$

<u>Thm</u> (Euler): $\forall \mathbf{x} \in (\mathbf{Z}_N)^*$: $\mathbf{x}^{\phi(N)} = \mathbf{1}$ in \mathbf{Z}_N

Example: $5^{\phi(12)} = 5^4 = 625 = 1$ in Z_{12}

Generalization of Fermat. Basis of the RSA cryptosystem

End of Segment