

Basic key exchange

Basic key exchange

Trusted 3rd parties

Key management

Problem: n users. Storing mutual secret keys is difficult

Total: O(n) keys per user

A better solution

Online Trusted 3rd Party (TTP)

Generating keys: a toy protocol

Alice wants a shared key with Bob. Eavesdropping security only.

Generating keys: a toy protocol

Alice wants a shared key with Bob. Eavesdropping security only.

Eavesdropper sees: $E(k_A, "A, B" \parallel k_{AB})$; $E(k_B, "A, B" \parallel k_{AB})$

(E,D) is CPA-secure \Rightarrow eavesdropper learns nothing about k_{AB}

Note: TTP needed for every key exchange, knows all session keys.

(basis of Kerberos system)

Toy protocol: insecure against active attacks

Example: insecure against replay attacks

Attacker records session between Alice and merchant Bob

– For example a book order

Attacker replays session to Bob

Bob thinks Alice is ordering another copy of book

Key question

Can we generate shared keys without an **online** trusted 3rd party?

Answer: yes!

Starting point of public-key cryptography:

- Merkle (1974), Diffie-Hellman (1976), RSA (1977)
- More recently: ID-based enc. (BF 2001), Functional enc. (BSW 2011)

End of Segment

Basic key exchange

Merkle Puzzles

Key exchange without an online TTP?

Goal: Alice and Bob want shared key, unknown to eavesdropper

• For now: security against eavesdropping only (no tampering)

Can this be done using generic symmetric crypto?

Merkle Puzzles (1974)

Answer: yes, but very inefficient

Main tool: puzzles

- Problems that can be solved with some effort
- Example: E(k,m) a symmetric cipher with $k \in \{0,1\}^{128}$
 - puzzle(P) = E(P, "message") where $P = 0^{96} \parallel b_1 \dots b_{32}$

- Goal: find P by trying all 2^{32} possibilities

Merkle puzzles

<u>Alice</u>: prepare 2³² puzzles

- For i=1, ..., 2³² choose random $P_i \in \{0,1\}^{32}$ and $x_i, k_i \in \{0,1\}^{128}$ set $puzzle_i \leftarrow E(0^{96} || P_i, "Puzzle \# x_i" || k_i)$
- Send puzzle₁, ..., puzzle₂₃₂ to Bob

<u>Bob</u>: choose a random $puzzle_i$ and solve it. Obtain (x_i, k_i) .

• Send x_i to Alice

<u>Alice</u>: lookup puzzle with number x_i . Use k_i as shared secret

In a figure

Alice's work:O(n)(prepare n puzzles)Bob's work:O(n)(solve one puzzle)

Eavesdropper's work: $O(n^2)$ (e.g. 2^{64} time)

Impossibility Result

Can we achieve a better gap using a general symmetric cipher?

Answer: unknown

But: roughly speaking,

quadratic gap is best possible if we treat cipher as a black box oracle [IR'89, BM'09]

End of Segment

Basic key exchange

The Diffie-Hellman protocol

Key exchange without an online TTP?

Goal: Alice and Bob want shared secret, unknown to eavesdropper

• For now: security against eavesdropping only (no tampering)

Can this be done with an exponential gap?

The Diffie-Hellman protocol (informally)

Fix a large prime p (e.g. 600 digits) Fix an integer g in {1, ..., p}

Alice Bob choose random **b** in {1,...,p-1} choose random **a** in {1,...,p-1} "Alice", A - g" (mod p) "Bob", $B \leftarrow g^b \pmod{p}$ $\mathbf{B}^{a} \pmod{p} = (g^{b})^{a} = \mathbf{k}_{AB} = g^{ab} \pmod{p} = (g^{a})^{b} = \mathbf{A}^{b} \pmod{p}$

Security (much more on this later)

Eavesdropper sees: p, g, $A=g^a \pmod{p}$, and $B=g^b \pmod{p}$

Can she compute $g^{ab} \pmod{p}$??

More generally: define $DH_g(g^a, g^b) = g^{ab} \pmod{p}$

How hard is the DH function mod p?

How hard is the DH function mod p?

Suppose prime p is n bits long. Best known algorithm (GNFS): run time exp($\tilde{O}(\sqrt[3]{n})$)

<u>cipher key size</u>	<u>modulus size</u>	size
80 bits	1024 bits	160 bits
128 bits	3072 bits	256 bits
256 bits (AES)	15360 bits	512 bits

As a result: slow transition away from (mod p) to elliptic curves

Insecure against man-in-the-middle

As described, the protocol is insecure against **active** attacks

Another look at DH

End of Segment