

Authenticated Encryption

Authenticated Encryption

Active attacks on CPA-secure encryption

Recap: the story so far

Confidentiality: semantic security against a CPA attack

Encryption secure against eavesdropping only

Integrity:

- Existential unforgeability under a chosen message attack
- CBC-MAC, HMAC, PMAC, CW-MAC

This module: encryption secure against **tampering** (active

Ensuring both confidentiality and integrity

Sample tampering attacks

TCP/IP: (highly abstracted)

Sample tampering attacks

IPsec: (highly abstracted)

Reading someone else's data

Note: attacker obtains decryption of any ciphertext beginning with "dest=25"

Easy to do for CBC with rand. IV

(only IV is changed)

IV', dest = 25 data

Encryption is done with CBC with a random IV.

What should IV' be?

$$m[0] = D(k, c[0]) \oplus IV = "dest=80..."$$

- $IV' = IV \oplus (...25...)$
- $IV' = IV \oplus (...80...)$
- $IV' = IV \oplus (...80...) \oplus (...25...)$
- It can't be done

An attack using only network access

Remote terminal app.: each keystroke encrypted with CTR mode

 $\{ checksum(hdr, D) = t \oplus checksum(hdr, D \oplus s) \} \Rightarrow can find D$

The lesson

CPA security cannot guarantee secrecy under active attacks.

Only use one of two modes:

- If message needs integrity but no confidentiality:
 use a MAC
- If message needs both integrity and confidentiality: use authenticated encryption modes (this module)

End of Segment

Authenticated Encryption

Definitions

Goals

An authenticated encryption system (E,D) is a cipher where

As usual: E: $K \times M \times N \longrightarrow C$

but D: $K \times C \times N \longrightarrow M \cup \{\bot\}$

Security: the system must provide

ciphertext is rejected

- sem. security under a CPA attack, and
- ciphertext integrity:
 attacker cannot create new ciphertexts that decrypt properly

Ciphertext integrity

Let (E,D) be a cipher with message space M.

Def: (E,D) has **ciphertext integrity** if for all "efficient" A:

 $Adv_{CI}[A,E] = Pr[Chal. outputs 1]$ is "negligible."

Authenticated encryption

Def: cipher (E,D) provides <u>authenticated encryption</u> (AE) if it is

- (1) semantically secure under CPA, and
- (2) has ciphertext integrity

Bad example: CBC with rand. IV does not provide AE

• $D(k,\cdot)$ never outputs \perp , hence adv. easily wins CI game

Implication 1: authenticity

Attacker cannot fool Bob into thinking a message was sent from Alice

 \Rightarrow if D(k,c) $\neq \perp$ Bob knows message is from someone who knows k (but message could be a replay)

Implication 2

Authenticated encryption \Rightarrow

Security against **chosen ciphertext attacks** (next segment)

End of Segment

Authenticated Encryption

Chosen ciphertext attacks

Example chosen ciphertext attacks

Adversary has ciphertext c that it wants to decrypt

• Often, adv. can fool server into decrypting certain ciphertexts (not c)

Often, adversary can learn partial information about plaintext

Chosen ciphertext security

Adversary's power: both CPA and CCA

- Can obtain the encryption of arbitrary messages of his choice
- Can decrypt any ciphertext of his choice, other than challenge (conservative modeling of real life)

Adversary's goal: Break semantic security

Chosen ciphertext security: definition

 $\mathbb{E} = (E,D)$ cipher defined over (K,M,C). For b=0,1 define EXP(b):

Chosen ciphertext security: definition

 \mathbb{E} is CCA secure if for all "efficient" A:

$$Adv_{CCA}[A,E] = Pr[EXP(0)=1] - Pr[EXP(1)=1]$$
 is "negligible."

Example: CBC with rand. IV is not CCA-secure

Dan Boneh

Authenticated enc. \Rightarrow CCA security

Thm: Let (E,D) be a cipher that provides AE.

Then (E,D) is CCA secure!

In particular, for any q-query eff. A there exist eff. B_1 , B_2 s.t.

$$Adv_{CCA}[A,E] \le 2q \cdot Adv_{CI}[B_1,E] + Adv_{CPA}[B_2,E]$$

Proof by pictures

So what?

Authenticated encryption:

 ensures confidentiality against an active adversary that can decrypt some ciphertexts

Limitations:

- does not prevent replay attacks
- does not account for side channels (timing)

End of Segment

Authenticated Encryption

Constructions from ciphers and MACs

... but first, some history

Authenticated Encryption (AE): introduced in 2000 [KY'00, BN'00]

Crypto APIs before then: (e.g. MS-CAPI) Crypto API

- Provide API for CPA-secure encryption (e.g. CBC with rand. IV)
- Provide API for MAC (e.g. HMAC)

Every project had to combine the two itself without a well defined goal

Not all combinations provide AE ...

Combining MAC and ENC (CCA)

Encryption key k_E . MAC key = k_I

A.E. Theorems

Let (E,D) be CPA secure cipher and (S,V) secure MAC. Then:

1. Encrypt-then-MAC: always provides A.E.

2. MAC-then-encrypt: may be insecure against CCA attacks

however: when (E,D) is rand-CTR mode or rand-CBC M-then-E provides A.E.

for rand-CTR mode, one-time MAC is sufficient

Standards (at a high level)

- GCM: CTR mode encryption then CW-MAC (accelerated via Intel's PCLMULQDQ instruction)
- CCM: CBC-MAC then CTR mode encryption (802.11i)
- EAX: CTR mode encryption then CMAC

All support AEAD: (auth. enc. with associated data). All are nonce-based.

MAC Security -- an explanation

Recall: MAC security implies $(m, t) \implies (m, t')$

Why? Suppose not: $(m, t) \rightarrow (m, t')$

Then Encrypt-then-MAC would not have Ciphertext Integrity!!

Dan Boneh

OCB: a direct construction from a PRP

More efficient authenticated encryption: one E() op. per block.

Performance:

Crypto++ 5.6.0 [Wei Dai]

AMD Opteron, 2.2 GHz (Linux)

<u>C</u>	<u> Cipher</u>	code <u>size</u>	Speed (MB/sec)		
[A	ES/GCM	large**	108	AES/CTR	139
Α	ES/CCM	smaller	61	AES/CBC	109
L	AES/EAX	smaller	61	AES/CMAC	109
Д	ES/OCB		129*		147

End of Segment