
Dan Boneh

Collision resistance

18733: Applied Cryptography Anupam Datta (CMU)

Dan Boneh

Collision resistance

HMAC:
a MAC from SHA-256

Online Cryptography Course Dan Boneh

Dan Boneh

The Merkle-Damgard iterated construction

Thm: h collision resistant ⇒ H collision resistant

Can we use H(.) to directly build a MAC?

h h h

m[0] m[1] m[2] m[3] ll PB

h
IV

(fixed)

H(m)

MAC from a Merkle-Damgard Hash Function

H: X≤L⟶ T a C.R. Merkle-Damgard Hash Function

Attempt #1: S(k, m) = H(k ll m)

This MAC is insecure because:

Given H(k ll m) can compute H(k ll m ll PB ll w) for any w.

Given H(k ll m) can compute H(k ll m ll w) for any w.

Given H(k ll m) can compute H(w ll k ll m ll PB) for any w.

Anyone can compute H(k ll m) for any m.

Dan Boneh

Standardized method: HMAC (Hash-MAC)

Most widely used MAC on the Internet.

H: hash function.

example: SHA-256 ; output is 256 bits

Building a MAC out of a hash function:

HMAC: S(k, m) = H(kopad ll H(kipad ll m))

Dan Boneh

HMAC in pictures

Similar to the NMAC PRF.

main difference: the two keys k1, k2 are dependent

h h

m[0] m[1] m[2] ll PB

h

h
tag

> > >h

k⨁ipad

IV
(fixed)

>

>
IV

(fixed)

h
>

k⨁opad

Dan Boneh

HMAC properties

Built from a black-box implementation of SHA-256.

HMAC is assumed to be a secure PRF

• Can be proven under certain PRF assumptions about h(.,.)

• Security bounds similar to NMAC

– Need q2/|T| to be negligible (q << |T|½)

In TLS: must support HMAC-SHA1-96

Dan Boneh

End of Segment

Dan Boneh

Collision resistance

Timing attacks on MAC
verification

Online Cryptography Course Dan Boneh

Dan Boneh

Warning: verification timing attacks [L’09]

Example: Keyczar crypto library (Python) [simplified]

def Verify(key, msg, sig_bytes):

return HMAC(key, msg) == sig_bytes

The problem: ‘==‘ implemented as a byte-by-byte comparison

• Comparator returns false when first inequality found

Dan Boneh

Warning: verification timing attacks [L’09]

Timing attack: to compute tag for target message m do:

Step 1: Query server with random tag

Step 2: Loop over all possible first bytes and query server.

stop when verification takes a little longer than in step 1

Step 3: repeat for all tag bytes until valid tag found

m , tag
k

accept or reject

target
msg m

Dan Boneh

Defense #1

Make string comparator always take same time (Python) :

return false if sig_bytes has wrong length

result = 0

for x, y in zip(HMAC(key,msg) , sig_bytes):

result = result | (ord(x) ^ ord(y))

return result == 0

Can be difficult to ensure due to optimizing compiler.

Dan Boneh

Defense #2

Make string comparator always take same time (Python) :

def Verify(key, msg, sig_bytes):

mac = HMAC(key, msg)

return HMAC(key, mac) == HMAC(key, sig_bytes)

Attacker doesn’t know values being compared

Dan Boneh

End of Segment

