18733: Applied Cryptography Anupam Datta (CMU)

Collision resistance

Online Cryptography Course Dan Boneh

Collision resistance

HMAC:
a MAC from SHA-256

The Merkle-Damgard iterated construction

m[1] m[2] m[3] I PB

Thm: h collision resistant = H collision resistant

Can we use H(.) to directly build a MAC?

MAC from a Merkle-Damgard Hash Function

H: Xt — T a C.R. Merkle-Damgard Hash Function

Attempt #1: S(k, m)=H(k1l m)

This MAC is insecure because:

O Given H(klIlm) cancompute H(wll kllmll PB) forany w.
O Given H(kllm) cancompute H(klimllw) forany w.
——=0 Given H(kllm) cancompute H(klImIlIPBIllw) forany w.

O Anyone can compute H(kllm) forany m.

Standardized method: HMAC (Hash-MAC)

Most widely used MAC on the Internet.

H:

hash function.
example: SHA-256 ; outputis 256 bits

Building a MAC out of a hash function:

HMAC:

S(k, m)= H(k®opad Il H(k®ipadllm))

HMAC in pictures

m[1] m[2] I PB
IV
(fixed)
kéopad
\% »
(fixed) g /

Ks,
Similar to the NMAC PRF.

main difference: the two keys k;, k, are dependent

HMAC properties

Built from a black-box implementation of SHA-256.

HMAC is assumed to be a secure PRF
e (Can be proven under certain PRF assumptions about h(.,.)
e Security bounds similar to NMAC

— Need g?/|T| to be negligible (qg<< |T|”)

In TLS: must support HMAC-SHA1-96

End of Segment

Online Cryptography Course Dan Boneh

Collision resistance

Timing attacks on MAC
verification

Warning: verification timing attacks vos

Example: Keyczar crypto library (Python) [simplified]

def Verify(key, msg, sig_bytes):
return HMAC(key, msg) == sig_bytes
The problem: ‘== implemented as a byte-by-byte comparison
 Comparator returns false when first inequality found

Warning: verification timing attacks vos

m, tag T
target P\ ” _ ‘
msg M p accept or reject I.

Timing attack: to compute tag for target message m do:

Step 1: Query server with random tag
Step 2: Loop over all possible first bytes and query server.

stop when verification takes a little longer than in step 1
Step 3: repeat for all tag bytes until valid tag found

SIS3| ¥[w | ¥ |¥

Defense #1

Make string comparator always take same time (Python) :

return false if sig_bytes has wrong length

result=0

for x, y in zip(HMAC(key,msg) , sig_bytes):
result = result | (ord(x) » ord(y))

return result ==

Can be difficult to ensure due to optimizing compiler.

Defense #2

Make string comparator always take same time (Python) :

def Verify(key, msg, sig_bytes):
mac = HMAC(key, msg)
return HMAC(key, mac) == HMAC(key, sig_bytes)

Attacker doesn’t know values being compared

End of Segment

