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The Merkle-Damgard iterated construction

Thm:    h collision resistant   ⇒ H collision resistant

Can we use  H(.)  to directly build a MAC?
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MAC from a Merkle-Damgard Hash Function

H: X≤L⟶ T a C.R. Merkle-Damgard Hash Function

Attempt #1:     S(k, m) = H( k ll m)

This MAC is insecure because:

Given  H( k ll m)   can compute   H( k ll m ll PB ll w )  for any  w.

Given  H( k ll m)   can compute   H( k ll m ll w )  for any  w.

Given  H( k ll m)   can compute   H( w ll k ll m ll PB)  for any  w.

Anyone can compute   H( k ll m )  for any  m.
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Standardized method:   HMAC  (Hash-MAC)

Most widely used MAC on the Internet.

H:   hash function.      

example:   SHA-256 ;    output is 256 bits

Building a MAC out of a hash function:

HMAC:       S( k, m ) =  H( kopad ll  H( kipad ll m ) )
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HMAC in pictures

Similar to the NMAC PRF.        

main difference:  the two keys k1, k2 are dependent
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HMAC properties

Built from a black-box implementation of SHA-256.

HMAC is assumed to be a secure PRF

• Can be proven under certain PRF assumptions about h(.,.)

• Security bounds similar to NMAC

– Need  q2/|T|  to be negligible    ( q << |T|½ )

In TLS:    must support   HMAC-SHA1-96
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End of Segment
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Warning:  verification timing attacks  [L’09]

Example: Keyczar crypto library  (Python)       [simplified]

def Verify(key, msg, sig_bytes):

return HMAC(key, msg) == sig_bytes

The problem:    ‘==‘   implemented as a byte-by-byte comparison

• Comparator returns false when first inequality found
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Warning:  verification timing attacks  [L’09]

Timing attack:   to compute tag for target message m do:

Step 1:   Query server with random tag

Step 2:   Loop over all possible first bytes and query server.

stop when verification takes a little longer than in step 1

Step 3:   repeat for all tag bytes until valid tag found

m ,  tag
k

accept or reject

target 
msg m
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Defense #1

Make string comparator always take same time   (Python) : 

return false if  sig_bytes has wrong length

result = 0        

for x, y in zip( HMAC(key,msg) , sig_bytes):

result = result | (ord(x) ^ ord(y))

return result == 0

Can be difficult to ensure due to optimizing compiler.
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Defense #2

Make string comparator always take same time   (Python) : 

def Verify(key, msg, sig_bytes):

mac = HMAC(key, msg)

return HMAC(key, mac) == HMAC(key, sig_bytes)

Attacker doesn’t know values being compared



Dan Boneh

End of Segment


