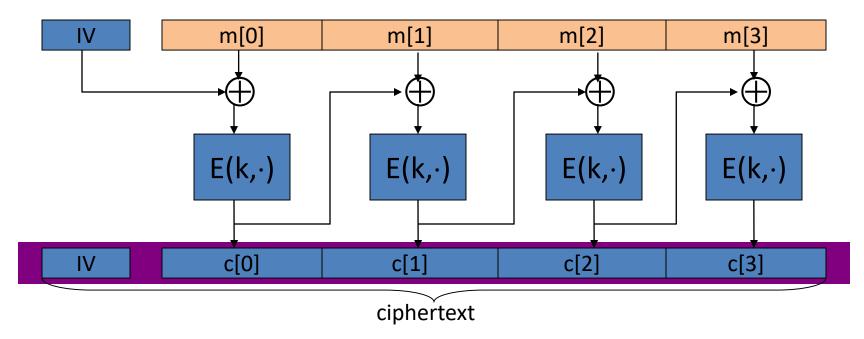


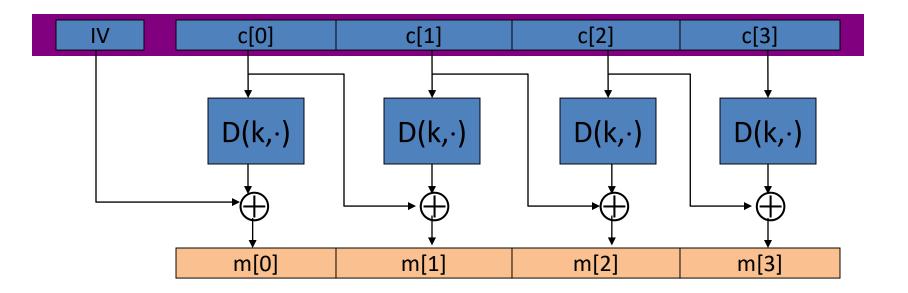
Using block ciphers

Using block ciphers


Modes of operation: many time key (CBC)

Example applications:

- 1. File systems: Same AES key used to encrypt many files.
- 2. IPsec: Same AES key used to encrypt many packets.


Construction 1: CBC with random IV

Let (E,D) be a PRP. $E_{CBC}(k,m)$: choose <u>random</u> IVEX and do: $F: \mathcal{U} \times \{o_i\}^{h} \rightarrow \{o_i\}^{h}$

Decryption circuit

In symbols: $c[0] = E(k, IV \oplus m[0]) \implies m[0] = D(k, c[0]) \oplus IV$

CBC: CPA Analysis

<u>CBC Theorem</u>: For any L>0,

If E is a secure PRP over (K,X) then

Proof in recitation

 E_{CBC} is sem. sec. under CPA over (K, X^L, X^{L+1}).

In particular, for a q-query adversary A attacking E_{CBC} there exists a PRP adversary B s.t.:

 $Adv_{CPA} [A, E_{CBC}] \leq 2 \cdot Adv_{PRP} [B, E] + 2 q^2 L^2 / |X|$

Note: CBC is only secure as long as $q^2L^2 << |X|$

An example

$$Adv_{CPA} [A, E_{CBC}] \le 2 \cdot PRP Adv[B, E] + 2 q^2 L^2 / |X|$$

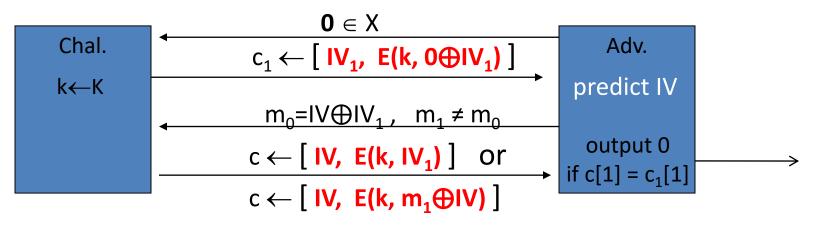
q = # messages encrypted with k , L = length of max message

Suppose we want $Adv_{CPA} [A, E_{CBC}] \le 1/2^{32} \iff q^2 L^2 / |X| < 1/2^{32}$

• AES: $|X| = 2^{128} \implies q L < 2^{48}$

So, after 2⁴⁸ AES blocks, must change key

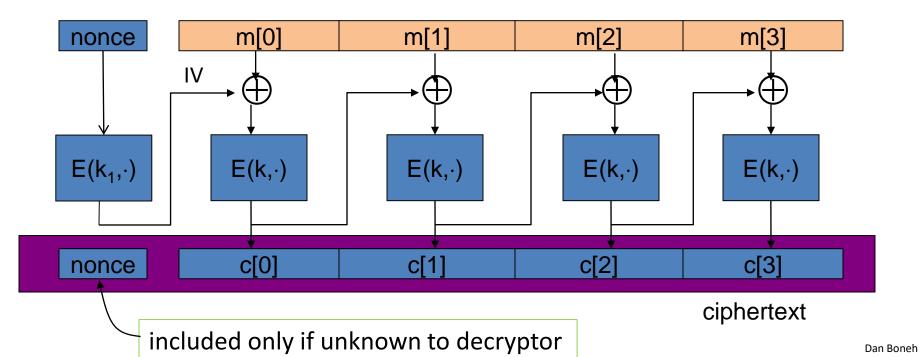
• 3DES:
$$|X| = 2^{64} \Rightarrow q L < 2^{16}$$


Contrast with asymptotic security

- Guarantees that adversary's advantage is negligible for all "sufficiently" large security parameters
 - Does not provide guidance on what is "sufficiently" large
 - Theoretically more pleasing: less machine dependent

Attack on CBC with predictable IV

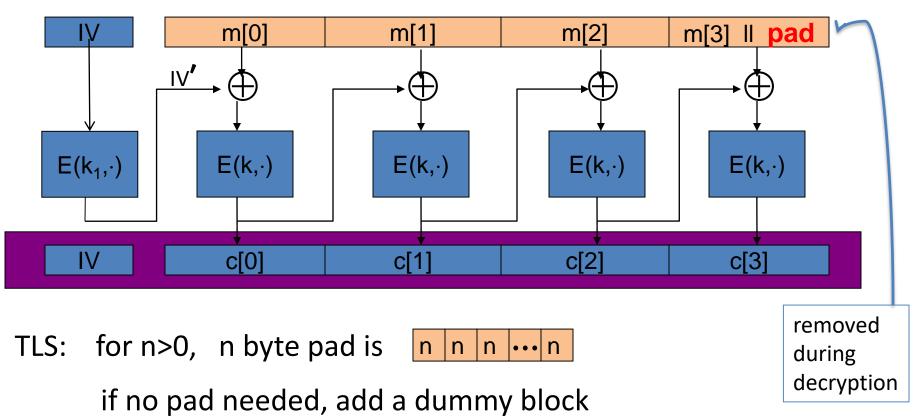
CBC where attacker can <u>predict</u> the IV is not CPA-secure !!


Suppose given $c \leftarrow E_{CBC}(k,m)$ can predict IV for next message

Bug in SSL/TLS 1.0: IV for record #i is last CT block of record #(i-1)

Construction 1': nonce-based CBC

 Cipher block chaining with <u>unique</u> nonce: key = (k,k₁) unique nonce means: (key, n) pair is used for only one message



An example Crypto API (OpenSSL)

```
void AES cbc encrypt(
                                           cfa security
 const unsigned char *in,
 unsigned char *out,
size_t length,
 const AES KEY *key,
 unsigned char *ivec,
                             ← user supplies IV
 AES ENCRYPT or AES DECRYPT);
```

When nonce is non random need to encrypt it before use

A CBC technicality: padding

End of Segment

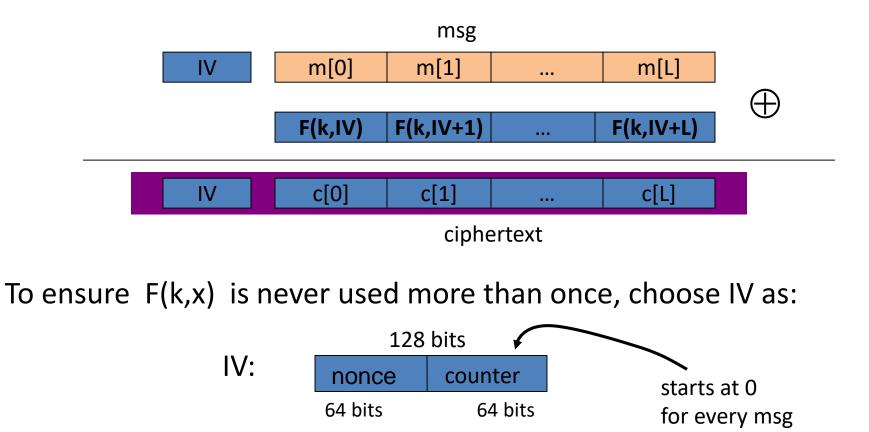
Using block ciphers

Modes of operation: many time key (CTR)

Example applications:

- 1. File systems: Same AES key used to encrypt many files.
- 2. IPsec: Same AES key used to encrypt many packets.

Construction 2: rand ctr-mode


Let F: $K \times \{0,1\}^n \longrightarrow \{0,1\}^n$ be a secure PRF.

E(k,m): choose a random $IV \in \{0,1\}^n$ and do:

note: parallelizable (unlike CBC)

Construction 2': nonce ctr-mode

rand ctr-mode (rand. IV): CPA analysis

• <u>Counter-mode Theorem</u>: For any L>0,

If F is a secure PRF over (K,X,X) then

 E_{CTR} is a sem. sec. under CPA over (K,X^L,X^{L+1}).

In particular, for a q-query adversary A attacking E_{CTR} there exists a PRF adversary B s.t.:

 $Adv_{CPA}[A, E_{CTR}] \le 2 \cdot Adv_{PRF}[B, F] + 2 q^2 L / |X|$

<u>Note</u>: ctr-mode only secure as long as q²L << |X|. Better than CBC !

An example

$$Adv_{CPA} [A, E_{CTR}] \le 2 \cdot Adv_{PRF} [B, E] + 2 q^2 L / |X|$$

q = # messages encrypted with k , L = length of max message

Suppose we want $Adv_{CPA} [A, E_{CTR}] \le 1/2^{32} \iff q^2 L/|X| < 1/2^{32}$

• AES:
$$|X| = 2^{128} \implies q L^{1/2} < 2^{48}$$

So, after 2³² CTs each of len 2³², must change key

(total of 2⁶⁴ AES blocks)

Comparison: ctr vs. CBC

	CBC	ctr mode	
uses	PRP	PRF	
parallel processing	No	Yes	
Security of rand. enc.	q^2 L^2 << X	X q^2 L << X	
dummy padding block	Yes	No	
1 byte msgs (nonce-based)	16x expansion	no expansion	

(for CBC, dummy padding block can be solved using ciphertext stealing)

Summary

- PRPs and PRFs: a useful abstraction of block ciphers.
- We examined two security notions: (security against eavesdropping)
 - 1. Semantic security against one-time CPA.
 - 2. Semantic security against many-time CPA.
 - Note: neither mode ensures data integrity.
- Stated security results summarized in the following table:

Power Goal	one-time key	Many-time key (CPA)	CPA and integrity
Sem. Sec.	steam-ciphers det. ctr-mode	rand CBC rand ctr-mode	later

Further reading

 A concrete security treatment of symmetric encryption: Analysis of the DES modes of operation, M. Bellare, A. Desai, E. Jokipii and P. Rogaway, FOCS 1997

• Nonce-Based Symmetric Encryption, P. Rogaway, FSE 2004

End of Segment