18733: Applied Cryptography Anupam Datta (CMU)

Stream ciphers

Slides: Dan Boneh

Stream ciphers

Semantic security

Goal: secure PRG = “secure” stream cipher

What is a secure cipher?

Attacker’s abilities: obtains one ciphertext (for now)

Possible security requirements:

attempt #1: attacker cannot recover secret key
El(m)=hm

attempt #2: attacker cannot recover all of plaintext
E(K‘/ Wo//“‘l): h‘a//”"l@l<
Recall Shannon’s idea:
CT should reveal no “info” about PT

Recall Shannon’s perfect secrecy

Let (E,D) be a cipher over (K,M,C)

(E,D) has perfect secrecyif Vmym; €M ([my|=|m,|)
{E(k,my)} = {E(km;)} where kK

(E,D) has perfect secrecy if Vmg,m, €M (|[my|=|m,|)
{E(k,mg) } =, {E(k,my)} where k<K

... but also need adversary to exhibit m,, m; € M explicitly

Semantic Security (one-time key)

For b=0,1 define experiments EXP(0) and EXP(1) as:
b

< my,m; e M: |mgy| =|m,|

c < E(k, mh)

for b=0,1: W, :=[event that EXP(b)=1] lb < {0,1}

Advg[AE] = | Priw,]1- Priw,]1| €10,1]

Semantic Security (one-time key)

Def: Eis semantically secure if for all efficient A

Adv..[AE] is negligible.

= for all explicitmy, m; € M : { E(k,m,) } =, { E(k,m,) }

Examples

Suppose efficient A can always deduce LSB of PT from CT.

= E =(E,D) is not semantically secure.

'be{o,1)
v

m,, LSB(m,)=0

Adv. B (us)
-y, LSB(m,)=1

LSB(m,)=b -

Then Adv.[B, E] = | PrlEXP(0)=1]1- PrlEXP(1)-1] |=]0-1] =1

v

an Boneh

OTP is semantically secure

(0,1}

EXP(0): mg, my e M: [mg| =|m,]
// C < k@mn
(identical distributions

m&,m eM: |my|=|m,]|

EXP(1): < - : -

\ c<—k@m1

I

Forall A: Adve[A,OTP] = | Pr{ A(k@®my)=1]- Pr[A(kdm,)=1]

End of Segment

Slides: Dan Boneh

Stream ciphers

Stream ciphers are
semantically secure

Goal: secure PRG = semantically secure stream cipher

Stream ciphers are semantically secure

Thm: G:K —{0,1}" is a secure PRG =

stream cipher E derived from G is sem. sec.

V sem. sec. adversary A, da PRG adversary B s.t.

Adv[AE] < 2 - Adv,r[B,G]

Proof:

My, My N
chal. | < adv. A
kek | ¢« Mg G(k)
>
b'=1
l J
my, M, N
chal. |« adv. A
kek | c<m4 D G(k)
>
|b’=1

INtuition
' o om N
chal. |« A adv. A
“p| [refolp cmo@r
_ lb’é;/
p
g my, M, N
chal. | < adv. A
“p| [rfo1p cemDr
lb’él
_ /

Proof: Let A be a sem. sec. adversary.

< my,m; e M: |mgy| =|m,|

c < my @ G(k)

"b’ e {0,1}
For b=0,1: W, := [event that b’=1].
Adv[AE]l = | Priw,]1- Priw,] |

Proof: Let A be a sem. sec. adversary.

<

my,m; e M: |mgy| =|m,|

c—m,Dr

"b’ e {0,1}

For b=0,1: W, := [event that b’=1].

Adv[A,E] = ‘ PriW, |- PrlW,;] ‘

For b=0,1: R, := [eventthatb’=1]

Proof: Let A be a sem. sec. adversary.

Claim1: |Pr[R)]—=Pr[R,]| = Adv [4, ov] =0
Claim 2: 3B: |Pr[Wb]—Pr[Rb]| = A/v [3 (__']

4 4 4

for é'-e /

| | |
0 Pr[WO] Pr[Rb] Pr[Wl]

,Z)JV [u] Ay » [w)

—

= Adv[AE] = | Pr[W,] - Priw,]| < 2 - Adv,e.[B,G]

Proof of claim 2: 3B: | Pr[W,] = Pr[R,] | = Advpre[B,G]

Algorithm B:

y €{0,1}" s | PRG adv. B (us)

Mg, My

c « my,Dy

< b’ € {0,1}

AdVPRG[BIG] _ PI'- "[6(0‘)-"/]" PP‘ [B/f(k)/=/] :/ﬂ[fa] -G 'Vo]f

y—é‘—(ﬂ,l} Ké-‘—:}(

Dan Boneh

End of Segment

Slides: Dan Boneh

Stream ciphers

Real-world Stream
Ciphers

Modern stream ciphers:

PRG: {0,1} x R — {0,1}"

e~
S ee/ L
hondc e

Nonce: a non-repeating value for a given key.

E(k, m;r) = m @ PRG(k ; r)

The pair (k,r) is never used more than once.

eStream

nnnnnnn

eStream: Salsa 20 (sw+Hw)

.[——m,h(e.
Salsa20: {0,1}1280r256 x {0 1}¢4 — {0,1} (max n = 273 bits)

Salsa20(k;r) :

k
N —
i

32 bytes

H(k,(r,0) I H(k, (1)) Il..

64 byte
output

h

(10 rounds)

64 bytes 64 bytes

h: invertible function. designed to be fast on x86 (SSE2)

|s Salsa20 secure (unpredictable) ?

Unknown: no known provably secure PRGs

In reality: no known attacks better than exhaustive search

Performance:

AMD Opteron, 2.2 GHz

eStream -

(Linux)

PRG

RC4
Salsa20/12

Sosemanuk

Crypto++ 5.6.0 [Wei Dai]

Speed (MB/sec)

126

643
727

Generating Randomness (eg. keys, 1v)

! ENLTOPY

Pseudo random generators in practice: (e.g. /dev/random)

e Continuously add entropy to internal state

* Entropy sources:
 Hardware RNG: Intel RdRand inst. (Ivy Bridge). 3Gb/sec.
 Timing: hardware interrupts (keyboard, mouse)

NIST SP 800-90: NIST approved generators

End of Segment

Additional Slides

nnnnnnnn

Weak PRGs (do not use for crypto)

Lo, C°”5' 8@‘1?!‘6{{4)‘ W({L P4r4W'ée}’S 4/ é/}o.'

ouépué bels of r([l

C++

L

HA e acr[i-d b mat p

-

glibc random():
rli] < (r[i-3] + r[i-31]) % 232
output rfi] >>1

/

53\’/5 T‘[.a]

hever vse random ()
For cry/)io (]

(e 9. Kerberss V&)

Dan Boneh

Old example (software). RC4 (1987)

2048 bits

1 byte
per round

128 bits

seed

Used in HTTPS and WEP

Weaknesses:
1. Biasininitial output: Pr[2"™byte=0] = 2/256
2. Prob.of (0,0) is 1/256%+ 1/2563
3. Related key attacks

Old example (hardware). CSS (badly broken)

Linear feedback shift register (LFSR):

oy

I] |/

—>

=

\——0/ | [|
\E/ Seed= (actl. valva
X7

DVD encryption (CSS): 2 LFSRs

GSM encryption (A5/1,2):
Bluetooth (EO): 4 LFSRs

3 LFSRs

. all broken

Old example (hardware). CSS (badly broken)
CSS: seed =5 bytes = 40 bits
seod
175t 2 o et cFsk ——3 _
R o7/
et 3 = [25bct LFsK = - f
l L)/{ej = ¥
carry feom
P*‘(’V('dls Hé((

Eﬂ{y —[o b)"?ﬂ/é b {ime A

Cryptanalysis of CSS (217 time attack)

encrypted movie

17-bit LFSR

’ ; D

+ (mod 256) > prefix

A

0o

25-bit LFSR
CSS prefix

For all possible initial settings of 17-bit LFSR do:

 Run 17-bit LFSR to get 20 bytes of output
e Subtract from CSS prefix = candidate 20 bytes output of 25-bit LFSR

* |If consistent with 25-bit LFSR, found correct initial settings of both !!

Using key, generate entire CSS output

00

