

Stream ciphers

Slides: Dan Boneh

The One Time Pad

Symmetric Ciphers: definition

<u>Def</u>: a **cipher** defined over $(\mathcal{X}, \mathcal{M}, \mathcal{C})$

is a pair of "efficient" algs (E, D) where $E: \mathcal{X} \times \mathcal{M} \rightarrow \mathcal{C}$ $S. \{., \forall m \in \mathcal{M}, \kappa \in \mathcal{Y}\}: D(t, E(t, m)) = M$

• E is often randomized. D is always deterministic.

The One Time Pad

(Vernam 1917)

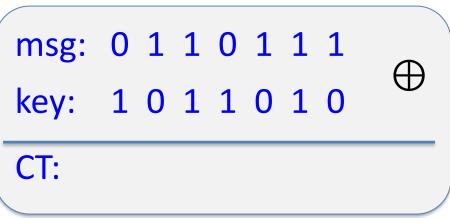
First example of a "secure" cipher

 $\mathcal{M} = \mathcal{G} = \{o_{i}\}^{h}, \qquad \mathcal{J}_{k} = \{o_{i}\}^{h}$

key = (random bit string as long the message)

The One Time Pad (Vernam 1917)

 $C := E(K,m) = K \bigoplus m$ $D(K,c) = K \bigoplus C$



Indeed: $D(K, E(K, m)) = D(K, K \oplus m) = K \oplus (K \oplus m) = (K \oplus K) \oplus m = 0 \oplus m = m$ You are given a message (m) and its OTP encryption (c).

Can you compute the OTP key from *m* and *c*?

No, I cannot compute the key.

Yes, the key is $k = m \oplus c$.

I can only compute half the bits of the key.

Yes, the key is $k = m \oplus m$.

The One Time Pad

(Vernam 1917)

Very fast enc/dec !!

... but long keys (as long as plaintext)

Is the OTP secure? What is a secure cipher?

What is a secure cipher?

Attacker's abilities: **CT only attack** (for now)

Possible security requirements:

attempt #1: attacker cannot recover secret key E(K,m) = m would be secure

attempt #2: attacker cannot recover all of plaintext $E(\kappa, m_o|n_i) = m_o || \kappa \Theta m_i, \quad vould be serve$

Shannon's idea:

CT should reveal no "info" about PT

Information Theoretic Security (Shannon 1949)

<u>Def</u>: A cipher (E, D) over ($\mathcal{K}, \mathcal{M}, \mathcal{C}$) has <u>perfect secrecy</u> if Hmo, m, e.M. (leu(mo)=leu(m, 1) and VCEC $P_r[E(K,m_0)=c] = P_r[E(K,m_1)=c]$ where it is uniform in 2d (u and)

Information Theoretic Security

<u>Def</u>: A cipher (E,D) over (K,M,C) has perfect secrecy if

 $\forall m_0, m_1 \in M$ ($|m_0| = |m_1|$) and $\forall c \in C$

$$Pr[E(k,m_0)=c] = Pr[E(k,m_1)=c] \quad \text{where } k \leftarrow k$$

<u>Lemma</u>: OTP has perfect secrecy.

Proof:

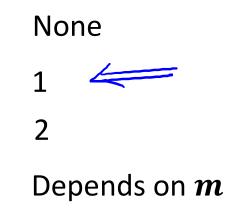
$$m_{c}: \Pr\left[E(K,m)=c\right] = \frac{\#Keys \ K \in \mathcal{GL} \ s.(.E(K,m)=c)}{|\mathcal{GL}|}$$

Set if
$$\forall m, c : \#\{K \in \mathcal{J} : E(K, m) = c\} = const.$$

$$\implies cipher has perfect secrecy$$

Let $m \in \mathcal{M}$ and $c \in \mathcal{C}$.

How many OTP keys map m to c ?



Lemma: OTP has perfect secrecy. Proof: For otp: $\forall m, c: \text{ if } E(K, m) = c$ $\implies K \oplus m = c \implies K = m \oplus c$ $\implies \#\{\kappa \in \mathcal{K}: E(\kappa, m) = c\} = 1$

=) otp has perfect secrecy 2

The bad news ...

<u>Thm</u>: perfect secrecy \Rightarrow $|\mathcal{K}| \ge |\mathcal{M}|$

perfect secrecy => Key-len = msg-len il.

- hard to use in practice !!

End of Segment

Slides: Dan Boneh

Stream ciphers

Pseudorandom Generators

Review

Cipher over (K,M,C): a pair of "efficient" algs (*E*, *D*) s.t. $\forall m \in M, k \in K: D(k, E(k, m)) = m$ Weak ciphers: subs. cipher, Vigener, ... A good cipher: **OTP** $M=C=K=\{0,1\}^n$ $E(k, m) = k \bigoplus m$, $D(k, c) = k \bigoplus c$ Lemma: OTP has perfect secrecy (i.e. no CT only attacks) Bad news: perfect-secrecy \Rightarrow key-len \ge msg-len

Stream Ciphers: making OTP practical

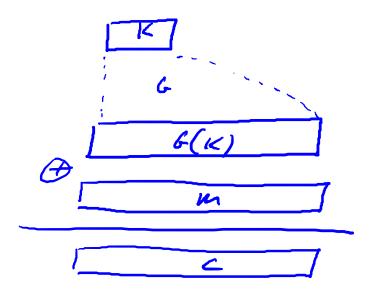
idea: replace "random" key by "pseudorandom" key

(eff. computable by a deterministic algorithm)

Stream Ciphers: making OTP practical

 $C := E(K,m) = M \mathcal{D}G(K)$

 $\mathcal{O}(\mathbf{K},\mathbf{C})=\mathbf{C}\mathcal{D}\mathcal{G}(\mathbf{K})$



Can a stream cipher have perfect secrecy?

- Yes, if the PRG is really "secure"
- No, there are no ciphers with perfect secrecy
- Yes, every cipher has perfect secrecy
- No, since the key is shorter than the message

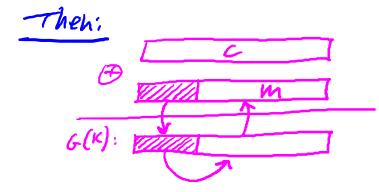
Stream Ciphers: making OTP practical

Stream ciphers cannot have perfect secrecy !!

• Need a different definition of security

• Security will depend on specific PRG

PRG must be unpredictable Suppose PRG is predictable: $\exists i: G(\kappa) = \frac{alg}{b_{m,\bar{k}}} G(\kappa)$



even G(K) -> G(K) |i+1 is a problem!

PRG must be unpredictable

We say that $G: K \longrightarrow \{0,1\}^n$ is **predictable** if:

] "eff" alg. A and Zosish-1 s.t. $\frac{P_{k}}{K \in \mathcal{G}} \left[A(G(u)) \right] = G(k) = G(k) = \frac{1}{2} \neq \varepsilon$ For non-negligible & (e.g. $\mathcal{Z} = \frac{1}{2}$) Def: PRG is **unpredictable** if it is not predictable

 \Rightarrow \forall i: no "eff" adv. can predict bit (i+1) for "non-neg" ϵ

Suppose $G: K \longrightarrow \{0,1\}^n$ is such that for all k: XOR(G(k)) = 1

Is G predictable ??

Yes, given the first bit I can predict the second No, G is unpredictable Yes, given the first (n-1) bits I can predict the n'th bit *composed to the the test* (n-1) bits I can predict the test (n-1) bits I can predict the test (n-1) bits I can predict the n'th bit *composed to the test* (n-1) bits I can predict the n'th bit *composed to the test* (n-1) bits I can predict the n'th bit *composed to the test* (n-1) bits I can predict the n'th bit *composed to the test* (n-1) bits I can predict the n'th bit *composed to the test* (n-1) bits I can predict the n'th bit *composed to the test* (n-1) bits I can predict the n'th bit *composed to the test* (n-1) bits I can predict the n'th bit *composed to the test* (n-1) bits I can predict the n'th bit *composed to the test* (n-1) bits I can predict the n'th bit *composed to the test* (n-1) bits I can predict the n'th bit *composed to the test* (n-1) bits I can predict the n'th bit *composed to the test* (n-1) bits I can predict the n'th bit *composed to the test* (n-1) bits I can predict the n'th bit *composed to the test* (n-1) bits I can predict the n'th bit *composed to the test* (n-1) bits I can predict the n'th bit *composed to the test* (n-1) bits I can predict the n'the n'th bit *composed to the test* (n-1) bits I can predict the n'the n'th bit *composed to the test* (n-1) bits I can predict the n'the n'

End of Segment

Slides: Dan Boneh

Stream ciphers

Negligible vs. non-negligible

Negligible and non-negligible

- <u>In practice</u>: ε is a scalar and
 - ε non-neg: $\varepsilon \ge 1/2^{30}$ (likely to happen over 1GB of data)
 - ε negligible: ε ≤ 1/2⁸⁰ (won't happen over life of key)

- In theory: ε is a function $\varepsilon: \mathbb{Z}^{\geq 0} \longrightarrow \mathbb{R}^{\geq 0}$ and
 - ε non-neg: $\exists d: ε(λ) ≥ 1/λ^d$ inf. often (ε ≥ 1/poly, for many λ)
 - $\boldsymbol{\varepsilon}$ negligible: $\forall d, \lambda \ge \lambda_d$: $\boldsymbol{\varepsilon}(\lambda) \le 1/\lambda^d$

 $(\varepsilon \leq 1/\text{poly}, \text{ for large } \lambda)$

Few Examples

ε(λ) = 1/2^λ : negligible

 $ε(λ) = 1/λ^{1000}$: non-negligible

 $ε(λ) = \begin{bmatrix} 1/2^λ & \text{for odd } λ \\ 1/λ^{1000} & \text{for even } λ \end{bmatrix}$

Negligible Non-negligible

PRGs: the rigorous theory view

PRGs are "parameterized" by a security parameter λ

• **PRG** becomes "more secure" as λ increases

Seed lengths and output lengths grow with λ

For every
$$\lambda = 1, 2, 3, \dots$$
 there is a different PRG G_{λ} :

$$G_{\lambda} : K_{\lambda} \rightarrow \{0,1\}^{n(\lambda)}$$

(in the lectures we will always ignore λ)

An example asymptotic definition

We say that $G_{\lambda} : K_{\lambda} \to \{0,1\}^{n(\lambda)}$ is <u>predictable</u> at position i if:

there exists a <u>polynomial</u> time (in λ) algorithm A s.t.

$$\Pr_{k \leftarrow K_{\lambda}} \left[\left| A\left(\lambda, G_{\lambda}(k) \right|_{1,...,i} \right) = \left| G_{\lambda}(k) \right|_{i+1} \right] > 1/2 + \varepsilon(\lambda)$$

for some <u>non-negligible</u> function $\epsilon(\lambda)$

End of Segment