
1© 2020 Philip Koopman

Lifecycle &
Configuration
Management

“Good judgment comes from experience,
and experience comes from bad judgment.”

– Frederick P. Brooks

Prof. Philip Koopman

2© 2020 Philip Koopman

Anti-Patterns:
 No version control
 No configuration management
 Incremental features without baseline

 Lifecycle issues
 Version control: keeping different versions straight
 Configuration management: what’s in the deployed system
 Lifecycle: old embedded systems (almost) never die

– Spare parts for obsolete systems
– Mid-life upgrades

Lifecycle Issues

https://www.youtube.com/watch?v=TUiX6m6WLdY&ab_channel=Sciences

http://arstechnica.com/information-
technology/2015/06/airbus-confirms-software-
configuration-error-caused-plane-crash/

The Register 6/10/15:
“Torque calibration parameters were wiped”…
“Pilots only get warning above 120 meters off
the ground”

4© 2020 Philip Koopman

 Stores & navigates snapshots of versions
 Ability to roll-back to previous version
 Synchronizes compatible versions

– Development vs. release versions
– “Branch” and “merge” parallel efforts

 Given a version number, give me the software

 Many popular tools – use one!
 Watch out for binary file management
 Multi-site can require special care

 Beyond the obvious…
 Also version: design documents, requirements, tests, tool chain
 Need process for who/what/when to update version
 Needs to tie into disaster recovery (have you tested it?)

Version Control

https://openclipart.org/detail/278845/git-opensource-workflow

5© 2020 Philip Koopman

 CM is identifying a particular version
 Which version has which bug fixes?
 Which version has which features?
 Which version should be the next release?
 Which version is in a failed product?

 Beyond the obvious…
 Snapshot every build and record its manifest
 Make sure returned units can self-report version

– Which library version, which driver version, etc.
– Need SW version, HW version, config data version (if applicable)
– Attempts to track this in a central database never work 100%

 Need to know which SW is compatible with which HW
– Need to be able to re-create a build, which might require obsolete tools

 Feature activation: which features have been licensed by user?

Configuration Management

Airbus A-380 bolt with part tracking
information. (Size: 2 cm x 1 cm)

6© 2020 Philip Koopman

Gas Pump Startup Printout Example

(Aug 2009)

7© 2020 Philip Koopman

 10-50 year lifecycles are common
 Example: SAGE air defense system

– Started 1954; deployed 1963
– Vacuum tubes; 500,000 lines of code
– In operation until 1983

 1AESS telephone switch: 1976 through 2008+
 Aircraft can operate for 25-30 years
 Cars routinely operate for 15+ years

 Challenges
 Disaster recovery (includes vendor bankruptcy)
 End-of-life for hardware & software
 Adding new services to existing platform
 Security problems if not updated

Embedded Systems Live (almost) Forever

https://goo.gl/EgtvwX

https://goo.gl/X4wUBT

8© 2020 Philip Koopman

https://www.popularmechanics.com/military/weapons/a19061/britain
s-doomsday-subs-run-windows-xp/

9© 2020 Philip Koopman
https://koddos.net/blog/windows-95-powered-medical-
equipment-are-being-hit-by-hackers/

10© 2020 Philip Koopman

 Take CM & Versioning seriously – they are different
 Use a formal Build Process to release

– Check that all versions in build are correct; record manifest
 Plan for 2x the lifecycle you think will happen

– And have a plan for product end of life

 Lifecycle pitfalls
 Releasing the wrong version

– Development version, debug version (e.g., watchdog turned off), etc.
 Cutting corners on software configuration management

– What if you can’t reconstruct software involved in a field failure?
 Getting caught without replacement parts

– Pay attention to end-of-life buys
– Anticipate obsolete: hardware, media, tools, libraries, …

Best Practices for Lifecycle Management

11© 2020 Philip Koopman

https://xkcd.com/1296/

https://goo.gl/pvDMHX CC BY-NC 2.0

12© 2020 Philip Koopman

https://m.xkcd.com/2324/

13© 2020 Philip Koopman

“Poorly documented legacy code leads to anger. Anger leads to hate.
Hate leads to spaghetti code.”

https://scitools.com/legacy-code-your-journey-to-the-dark-side/

	��Lifecycle &�Configuration Management����
	Lifecycle Issues
	Slide Number 3
	Version Control
	Configuration Management
	Gas Pump Startup Printout Example
	Embedded Systems Live (almost) Forever
	Slide Number 8
	Slide Number 9
	Best Practices for Lifecycle Management
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Discussion Questions
	Exercises

