
1© 2020 Philip Koopman

Unit
Testing

“Quality is free, but only to those who are
willing to pay heavily for it.”

― DeMarco & Lister

Prof. Philip Koopman

2© 2020 Philip Koopman

YOU ARE HERE
SPECIFY

PRODUCT

SPECIFY
SOFTWARE

UNIT
TEST

SOFTWARE
TEST

ACCEPTANCE
TEST

CREATE SW
ARCHITECTURE

IMPLEMENT

INTEGRATION
TEST

TRACEABILITY & VALIDATION

DESIGN
MODULES

Product
Requirements

Software Requirements

High Level Design

Detailed Design Source Code

Unit Test Results

Integration Test Results

Test Plan & Test Results

Test Plan & Test Results

Test Plan & Test Results

Test
Plan &

Test
Results

Software Test
Results

PRODUCT

3© 2020 Philip Koopman

 Anti-Patterns:
 Only system testing
 Testing only “happy paths”
 Forgetting to test “missing” code

 Unit testing
 Test a single subroutine/procedure/method

– Use low level interface (“unit” = “code module”)
 Test both based on structure and on functionality

– White box structural testing + Black box functional testing
 This is the best way to catch boundary-based bugs

– Much easier to find them here than in system testing

Unit Testing

4© 2020 Philip Koopman

 Tests designed based on behavior
 But without knowledge of implementation
 “Functional” or behavioral testing

 Test the what, but not the how
 Example: cruise control black box test

– Test operation at various speeds
– BUT, no way to tell if special cases in code have been tested

 Advantage: can be written only based on requirements or design
 Disadvantage: difficult to exercise all code paths

 Black box Unit Testing
 Tests based on detailed design (statechart, flowchart)

Black Box Testing

https://goo.gl/wJeZ56

5© 2020 Philip Koopman

 Tests designed with knowledge of software implementation
 Often called “structural” testing
 Sometimes: “glass box” or “clear box”

 Idea is to exercise software
knowing how it is written
 Example: cruise control white box test

– Exercise every line of code
» Tests that exercise both paths of every conditional branch statement

– Test operation at every point in control loop lookup table

 Advantage: helps getting high structural code coverage
 Disadvantage: doesn’t prompt coverage of “missing” code

– E.g., missing special case, missing exception handler

White Box Testing

6© 2020 Philip Koopman

Coverage is a metric for how thorough testing is
 Function coverage
 What fraction of functions have been tested?

 Statement coverage
 What fraction of code statements have been tested?

– (Have you executed each line of code at least once?)

 Branch coverage (also Path Coverage)
 Have both true and false branch paths been exercised?
 Includes, e.g., testing the false path for if (x) { … }

 MCDC coverage (next slide)

 Getting to 100% coverage can be tricky
– Error handlers for errors that aren’t supposed to happen
– Dead (unused) code that should be removed from source

Unit Testing Coverage

7© 2020 Philip Koopman

 Modified Condition/Decision Coverage (MC/DC)
 Used by DO-178 for critical aviation software testing
 Exercise all ways to reach all the code

– Each entry and exit point is invoked
– Each decision tries every possible outcome
– Each condition in a decision generates all outcomes
– Each condition in a decision is shown to independently

affect the outcome of the decision
 For example: “if (A == 3 || B == 4)” you need to test at least

– A == 3 ; B != 4 (A causes branch, not masked by B)
– A !=3 ; B == 4 (B causes branch, not masked by A)
– A !=3 ; B != 4 (Fall-through case)
– A == 3 ; B == 4 is NOT tested because it’s redundant (no new information gained)

 Might need trial & error test creation to generate 100% MCDC coverage

MCDC Coverage

https://www.youtube.com/watch?v=DivaWCNohdw

8© 2020 Philip Koopman

 Boundary tests:
 At borders of behavioral changes
 At borders of min & max values, counter rollover
 Time crossings: hours, days, years, …

 Exceptional values:
 NULL, NaN, Inf, null string, …
 Undefined inputs, invalid inputs
 Unusual events: leap year, DST change, …

 Justify your level of coverage
 Trace to unit design
 Get high code coverage
 Define strategy for boundary & exception coverage

Unit Testing Coverage Strategies

9© 2020 Philip Koopman

 Cunit as an example framework
 Test Suite: set of related test cases
 Test Case: A procedure that runs one or

more executions of a module for purpose of testing
 Assertion: A statement that determines

if a test has passed or failed

 Test case example: (http://cunit.sourceforge.net/doc/writing_tests.html#tests)

int maxi(int i1, int i2)
{ return (i1 > i2) ? i1 : i2; }
…
void test_maxi (void)
{ CU_ASSERT(maxi(0,2) == 2); // this is both a test case + assertion

CU_ASSERT(maxi(0, - 2) == 0);
CU_ASSERT(maxi(2,2) == 2); }

Unit Testing Frameworks

http://cunit.sourceforge.net/doc/introduction.html

10© 2020 Philip Koopman

 Unit Test every module
 Use high coverage combination of white box & black box
 Use a unit testing framework

– Multiple simple tests better than one huge, complex test
 Get good coverage of data values

– Especially, validate all lookup table entries

 Unit Testing Pitfalls
 Creating test cases is a development effort

– Code quality for test cases matters; test cases can have bugs!
 Difficult to test code can lead to dysfunctional “unit test” strategies

– Breakpoint debugging is not an effective unit test strategy
– Using Cunit to test 100K lines of code is not really unit testing

 Pure white box testing is “doomed to succeed” (neglects “missing” code)
 Don’t substitute unit tests for peer reviews and static analysis

Best Practices For Unit Testing

https://goo.gl/SjzaBm

11© 2020 Philip Koopmanhttps://goo.gl/pvDMHX CC BY-NC 2.0

12© 2020 Philip Koopman

	��Unit�Testing�����
	YOU ARE HERE
	Unit Testing
	Black Box Testing
	White Box Testing
	Unit Testing Coverage
	MCDC Coverage
	Unit Testing Coverage Strategies
	Unit Testing Frameworks
	Best Practices For Unit Testing
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	MCDC Coverage (3-part example #2)
	Example MCDC
	Discussion Questions
	Exercises

