18-600 Recitation #12
Malloc Lab - Part 2

November 14th, 2017

Carnegie Mellon

REMINDER

B Malloc Lab checkpoint is due on 11/17
= This is Friday (instead of the usual Thursday deadline)
= No late days available

B Final submission is due on 11/27
= Two late days available

B Remember:
= Revisit any assumptions you make in your code (e.g. initializations)
= Please follow proper style and header-comment guidelines.

Carnegie Mellon

AGENDA

B Recap
= Basics
= Implicit lists, Explicit lists and Segregated lists
B Design Considerations
= |nternal and external fragmentation
= Coalescing
= Finding a fit
B Debugging
= Heap Checker
= GDB and HProbe
B Further Optimization Techniques

Carnegie Mellon

MALLOC: Basics

Carnegie Mellon

Basics of Memory Allocation

B When is malloc(), free() used ?
= When amount of memory that needs to be used is not known at compile-time
= When you wish to free up chunks of memory after using them in the program

B Whydo we need a dynamic memory allocator ?
= Memory to be allocated is a contiguous chunk from the heap.
= The goal - fit a chunk of memory that can accommodate the size requested by
the user
* |n a short span of time (speed optimization)
= While wasting minimal heap memory (space optimization)

Carnegie Mellon

Malloc - The big picture

STACK

rsp l

sbrk() T

pointer

Calls to lib functions

HEAP (we are

Syscall for more memory allocating/freeing this)

a.k.a sbrk(...)

.data/.bss

text

Carnegie Mellon

MALLOC: Implementation Specifics

Carnegie Mellon

The Data Structure

B Requirements:

= The data structure needs to tell us where the blocks are, how big they are,
and whether they’re free

= We need to be able to CHANGE the data structure during calls to malloc
and free

= We need to be able to find the next free block that is “a good fit for” a
given payload

= We need to be able to quickly mark a block as free/allocated
= We need to be able to detect when we’re out of blocks.
= What do we do when we’re out of blocks?

Carnegie Mellon

The data structure

B The data structure IS your memory!
B Astart:
= <h1> <pll><h2> <pl2> <h3> <pl3>
= What goes in the header?
= Size ? Allocation status ? Anything else ?
= Let’s say somebody calls free(p2), how can | coalesce?
= Maybe you need a footer? Maybe not?

Carnegie Mellon

Keeping Track of Blocks

B Implicit Lists
= |mplementation - Simple
= Allocation time - Proportional to total blocks
= Freetime - Constant
= Memory usage - Depends onimplementation

N N~ N N N
ol W B o

Free Allocated

10

Keeping Track of Blocks

B Explicit Lists
= |mplementation - Slightly more complicated

= Allocation time - Proportional to number of free blocks

Carnegie Mellon

= Freetime - Depends upon implementation (constant/linear)

= Memory usage - Depends onimplementation

Free

Allocated

11

Carnegie Mellon

Explicit Lists

H Improvement over implicit list implemented by mm-baseline.c
B From aroot, keep track of all free blocks in a (doubly) linked list
= Remember a doubly linked list has pointers to next and previous
= Do we therefore use more space than in implicit list implementation ?

12

Carnegie Mellon

Explicit Lists

H Improvement over implicit list implemented by mm-baseline.c
B From aroot, keep track of all free blocks in a (doubly) linked list
= Remember a doubly linked list has pointers to next and previous
= Do we therefore use more space than in implicit list implementation ?
= Perhaps not!
= What data is common between allocated block and free block ?

13

Carnegie Mellon

Explicit Lists

H Improvement over implicit list implemented by mm-baseline.c
B From aroot, keep track of all free blocks in a (doubly) linked list
= Remember a doubly linked list has pointers to next and previous
= Do we therefore use more space than in implicit list implementation ?
= Perhaps not!
= What data is common between allocated block and free block ?
— Header, Payload, Footer

= Does a free block need data to be stored in payload ? Can we reuse this
space ?

14

Carnegie Mellon

Explicit Lists

H Improvement over implicit list implemented by mm-baseline.c
B From aroot, keep track of all free blocks in a (doubly) linked list
= Remember a doubly linked list has pointers to next and previous
= Do we therefore use more space than in implicit list implementation ?
= Perhaps not!
= What data is common between allocated block and free block ?
— Header, Payload, Footer

= Does a free block need data to be stored in payload ? Can we reuse this
space ?

— How can we overlap two different types of data at the same location ?

= Does an allocated block need next and previous pointers to be stored ?
= Does an allocated block need a footer ?

15

Carnegie Mellon

Keeping Track of Blocks

B Segregated Lists
= |mplementation - Extension of explicit lists

= Allocation time - Proportional to number of free blocks in the bin
= Freetime - Depends upon implementation
= Memory usage - Better usage with less allocation time

N
Bin 1 root . .

N
Bin 2 rom .

Free Allocated

16

Carnegie Mellon

Segregated Lists

B Can be thought of as multiple explicit lists

= What should we group by?
B Grouped by size — let’s quickly find a block of the size we want
B What size/number of buckets should we use?

= This is up to you to decide

17

Carnegie Mellon

Fragmentation

B Internal Fragmentation
= QOccursdueto:
= Alignment requirement. Payload is not a multiple of block size (not
avoidable)

Example: malloc(3) will return a

. 3 <extra memory> chunk of at least 16 bytes

= Data structures used for allocation (avoidable)

m - =
l

|

Header Footer

18

Carnegie Mellon

Fragmentation

B External Fragmentation
= QOccurs due to total free heap memory being large enough, but no single free
block is big enough
= Depends on patterns of requests

Pl = malloc(4)

malloc (5)

p2

malloc (6)

p3

free (p2)

pd = malloc(6) Oops! (what would happen now?)

19

Coalescing

B How to reduce external fragmentation ? Coalescing !

Carnegie Mellon

= Group adjacent free blocks together to give larger chunks of free blocks

= Gets rid of false external fragmentation

malloc(15) will call sbrk()

J

malloc(15) will succeed
without extending heap

Free

Allocated

20

Finding a fit

B First-Fit / Next-Fit / Best-Fit
= The policy you choose is up to you ! There is no absolute right/wrong.
= Has space v/s allocation time tradeoffs
= Can customize/find a combination of them too

M Free Block Ordering
= FIFO, LIFO or address-ordered ?

B Memory requested at sbrk() call ?
= Smaller requests can result in multiple requests => more time
= Larger requests => can lead to space wastage

21

Carnegie Mellon

MALLOC: Debugging

Carnegie Mellon

Heap Checker

B Heaper Checker is a graded part of the lab
= But write it first and use it. Don’t write it just before final submission!

B Heap Checker tips:
= |s meant to be correct, not to be efficient.

Heap checker should run silently until it finds an error
» Otherwise you will get more output than is useful
* You might find it useful to add a “verbose” flag, however
= Consider using a macro to turn the heap checker on and off
= This way you don’t have to edit all of the places you call it
= Thereis a built-in macro called LINE that gets replaced with the line number it’s on
= You can use this to make the heap checker tell you where it failed
= Call the heap checker at places that have a logical end. Eg: End of malloc(), free(), coalesce()

= Call heap checker at the start and end of these functions
23

Carnegie Mellon

Debugging

B Common Errors:
= Dereferencing invalid pointers / reading uninitialized memory
Overwriting memory
Freeing blocks multiple times (or not at all)
Referencing freed blocks
Incorrect pointer arithmetic

B Debugging Tips using mm-baseline.c
= We have injected a small bug in mm-baseline.c
= We attempt to trace it using
= GDB
= heapchecker
= hprobes

24

Debugging using GDB

B Set the optimization level to 0 before debugging
B Reset the optimization level back after debugging

= gec

= clang

= -08
= -WALL -WeXLId -weriol -y -UURLVER -WNO-Unused-runcoion -wno-unused-parameter
= -1lm -1rt

25

Carnegie Mellon

Bug Type I: Segmentation Faults

B Recollect the recitation on debugging using GDB
B Very useful to obtain the backtrace
B Examine values of variables

26

Carnegie Mellon

ash-4.25% g --args ./mdriver -c traces/syn-array.rep
NI ndh fGDRY Rad Hat Fnternrice linux 7 A 1-80 al7
opyright (C) 2813 Free Software Foundation, Inc.
icense GPLv3+: GNU GPL wersion 3 or later <http://fanu.org/licenses/fgpl.html=
his is free software: you are free to change and redistribute it.
here is MO WARRANTY, to the extent permitted by law. Type "show copying”
nd "show warranty"” for details.
his GDB was configured as "x86_64-redhat-linux-gnu".
or bug reporting instructions, please see:
http://www.gnu.org/software/gdb/bugs/=>...
eading symbols from fafs/andrew.cmu.edufusrs/preetium/private/labs/malloclabcheckpoint-hand
(gdb) run
tarting program: /fafs/andrew.cmu.edu/usr5/preetium/private/labs/malloclabcheckpoint-handout
[Thread debugging using libthread_db enabled]
sing host libthread db library "/libs4/libthread db.so.1".
ound benchmark throughput 19868 for cpu type Intel(R)Xeon(R}CPUES-2680v2@2.80GHz, benchmark

hroughput targets: min=9934, max=17881, benchmark=19868

krogram received signal SIGSEGY, Segmentation fault.
DA 350 LI flud_plev gb1ULR—UADUUUUUUUU) dL mm.C:628
28 size t size = extract size(*footerp);
wLss1ng sepa “ate debuginfos, use: debuginfo-install glibc-2.17-186.e17_2.8.x86_64
(gdb) bt
Hs U GAGUsooeIBB040634d in find_prev (block=0x808600808) at mm.c:628
1 GxBEEEEEEEEE4B5b92 in coalesce (block=0x800000000) at mm.c:417
2 OxBEEOEBEEEE4B568F in extend_heap (size=4096) at mm.c:406
3 OxB00000006046854T0 in mm_init () at mm.c:219
BxBORORBEEEE40322a 1n eval_mm_valid (trace=0x61d4c@, ranges=0x61d488) at mdriver.c:1832
S Oxeeee00000084015ad in run_tests (num_tracefiles=1, tracedir=0x60cled <tracedir> "./", tr
5 AvAARARRARARARLASA Sn main (qrge=3, argv=ax7fffffffdfdd) at mdriver.c:586
(gdb) p footerp
1 = (word_t *) Ox7fffffffs
(gdb) p mem_heap_hi()
eap 2 = (void *) exseeep1eef
(gdb) p mem_heap_lo()

3 = (vold *) Ox300006080
L:-—lh‘l |

o -

Carnegie Mellon

Bug Type 2: Correctness error report by driver

P races/syn-array.rep
Found benchmjrk throuthut 17422 for cpu type Intel(R)Xeon(R)CPUE5-2688v2@E2.80CGHz, benchmark checkpoint

Throughput targets: min=3484, max=15680, benchmark=17422

Testing mm malloc

Results for mm malloc:
valid util ops MSecs Kops trace
* no - - .ftraces/syn-array.rep

28

Carnegie Mellon

Setting breakpoints

s The tracefile contains a lot of allocations and few frees
s Most likely mm_malloc() has the issue
m Set breakpoint at every call to malloc

29

Carnegie Mellon

Setting breakpoints

gdp presx mmmatoe
Breal point 1 at Gx408562c: file mm.c, line 235.
(gdb) +un
Starting program: /afs/andrew.cmu.edufusrS/preetium/private/labs/malloclabcheckpoint-handout/. /mdriver -c traces/syn-array.rep
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/libe4/libthread_db.so.1".
Found benchmark throughput 19868 for cpu type Intel(R)Xeon(R)CPUES-2680v2@2.80GHz, benchmark regular

Throughput targets: min=9934, max=17881, benchmark=19868

Breakpoint 1, mm_malloc (size=1828) at mm.c:235
235 voild *bp = NULL;
issing separate debuginfos, use: debuginfo-install glibc-2.17-186.e17_2.8.x86_64
(gdb) ¢
Continuing.

1, mm_malloc (size=6632) at mm.c:235
void *bp = NULL;

1, mm_malloc (size=12) at mm.c:235
vold *bp = NULL;

Breakpoint 1, mm_malloc (size=2772) at mm.c:235

235 void *bp = NULL;

(gdb) c

Continuing.

ERROR [trace ./traces/syn-array.rep, line 8]: Payload (0x800880740:0x8008081213) overlaps another payload (@x800000740:8x80000212

correctness check finished, by running tracefile "traces/syn-array.rep”.
=> incorrect.

Terminated with 1 errors
[Inferior 1 (process 14430) exited normally]
(gdb) i

Setting conditional breakpoints

Egdb} run

Starting program: fafsfandrew.cmu.edufusr5/preetium/private/labs/malloclabcheckp
[Thread debugging using libthread_db enabled]

Using host libthread_db library "/lib&4/libthread db.so.1".

Found benchmark throughput 19868 for cpu type Intel(R)Xeon({R)CPUE5-2680v2{@2.80GH

Should have been: Throughput targets: min=9934, max=17881, benchmark=19868
asize = round_up(size, dsize) + dsize;
Breakpoint 1, mm_malloc (size=2772) at mm.c:239
239 dbg_requires({mm_checkheap};
M1:51nu separate debuginfos, use: debuginfo-install glibc-2.17-1086.217_2
n
244 vold *bp = NULL;
n

if (heap_listp == NULL) // Initialize heap if it isn't initialized

n
if (size == 8) // Ignore spurious request

asize = round_up(size, wsize) + dsize;

block = find_fit(asize);

31

Carnegie Mellon

Heapchecker

s The above problem is easy to identify using heap checker

bash-4.2% ./mdriver -p -V -D -f traces/syn-array.rep
ound benchmark throughput 17422 for cpu type Intel{R)Xeon{R)CPUES5-2680v2@E2.80CGHz, benchmark checkpoint

hroughput targets: min=3484, max=15680, benchmark=17422

esting mm malloc
[E‘-:IU Ling Lidiel LLe. LIdLesfSyi-dl1dy.lep

hecking mm_malloc for correctness, Line 8, Heap error in block Ox808608738. Header (Gx15f1) != footer (Bx1979)
R [l.l aLe .,':l.l -:IL['.“.'.,"V‘_'n}'II'-:II 1 dY .1 Ep, 7L7I.I]l'_' Ij H I'H']_LilELKi]E-:IIJ I 2Lul I]ELi Ii-:liL‘_'nl'_'

esults for mm malloc:
valid util ops Kops trace
- .ftraces/syn-array.rep

erminated with 1 errors

32

Using Hprobes

B Use hprobes as mentioned in the handout on the defaulting block
B Useful to check the contents of the heap

33

(gdb) break place if block = 0x800000738

Examine header and footer

(gdb) print hprobes(block, 0, asize)

Carnegie Mellon

ading symbols from fafs/andrew.cmu.edufusrS/preetium/privateflabs 'malloclabcheckpoint-handout/mdriver...done.
t b} break place if block=8xBEBBEETIE
aakpoint 1 at Bx485948: file mm.c, line 463.
oAy tan
arting program: fafsfandrew.cmu.edufusr5fpreetivmfprivate/labs/malloclabcheckpoint-handout/. /mdriver -c traces/syn-array.rep
Thread debugging using libthread_db enabled]
sing host libthread_db library " flib64/libthread_db.so.1".
ound benchmark throughput 19B6B for cpu type Intel{R)}Xeon{R)CPUES-26B8vZ@Z.B00Hz, benchmark regular

hroughput targets: min=9034, max=17B81, benchmark=19B68

preakpoint 1, place (block=8xBBBBOBT3E, asize=1B48) at mm.c:d463

63 size_t csize = get_size(block);

issing separate debuginfos, use: debuginfo-install glibc-2.17-186.el7_2.8.xB6_G4
gdb} print hprobe({block, @, B)

Pytes 0xBOOBEOT3IF...0xBO000BT38: G6xb0O0DEOOOOOOOEEG

1 = woid

gdb} print hprobe(block, @, 16)

Bytes BxBEBBOATAT...0xBOOOAGTIR: E6xB00O00BEE0ROEOOADE00AEOE0AEG0000E

if ({csize - asize) == min_block_size)
write_header(block, asize, true};

o write_footer(block, asize, true};
gdb} print hprobe{block, @, B)
fytes OxBOOBEOTIF...0xBOOOOBT3B: Bx0000060806006T31

block_next = find_next{block);
gdb} print hprobe(block, @, B}
fytes 6xBOBOOOT3IF...0xB00008738: Ox0000000000006731
4 = void
gdb} print asize
S = 1848
gdb} print {block-=payload) + get_size({block) - dsize
L6 = BxBoBBBBecd "1%\a"
(gdb} print hprobe({block, 8, asize)
iytes @xBOPOOOeEY...0xB00000738: 0x000D000000000T310t J00
jB@BeE000086000000600008000000060000000000000000000000 3600000000000 000000000E000000E00000000000000000E000E0EE0EE00000000000000000000000000000000060000000000000G
HUHHHHH HEHEHEHHHHY HEHEEHHEHHE HE B HEHEYE Y BYHYHYHUYHU 0B BE000B00600000000000BE000RE0E0BENERE00E0E0E000EEDEREDEEEEEEE0REED0E0ERE000BE0ERE00E0BE0E0000E0E0E00RBEEEE0E
pE60606000
hoa6606060000000000060000000600000000000000000000000000000000A0RE00E00000000000A0AEAEEEEEE0000000000000AEOE0E00E0000000000000AE0E000000000000000000000000000000
pooea0e00000E0000006000000006000000000000000000000000000600000060000000000000000000000000000000000006000E000000000000000000000000000000000000000600000000E00000
po80606000
pE80606000
fobEa000000060000006000000006000000RE000E0000000000000006000000600000000000000000000E0000000000000006000E0000000E00E000000000000E0000000000000006000000REE0EE0E
pooEaoa00000E000E00E0E000000E00000000000E000000E0000000060000006000000000000000000000000000000000000600000000000E0000000000000000000000000000000600000000E00000
po8660600
hE0660600000000000000000000000000000000000E000000000000000000000E000000000000000000000E00E0000000000000AEAE00
foBBa00B0000E0000006000000006000000R0000E0000000000000006000000600000000000000000000E000000000000000E000E00E0000BE00E000000000000E000000000000000E000000R0000E0G
po80606000
po8660600
HoBE600000000000000000000000600000808B0BBB0E LuLvuueuiuvLLuuLLLLLLLLLLULBLLLLLLLLBUBLsLLuususueueow: DEEB000B00000000000000000000000000000000000000600000000E0000G
fooEBoaB00EEE0BRE0EEDEEE00REEDEBEDORAE0ERE0EE! DOEBOAEEOBEE0EREDEOEEEEE0OREEDEEDERRE0DBENERE00E0000E! PEEDEBREDEEEEEEEEOREEDEEDEREE0DRE0ERE0EEBE0E0000EDEBRE0EREEEEE0E
hE8860600000000000000000000000000000000000000(00000000000000000000000000000T31

o e

Carnegie Mellon

Using watchpoints

B Now use watchpoints to observe when the header and footer values
change
= watch *0x800000e67, where 0x800000e67 is the address of the
header as shown by hprobes
= watch *0x800000738, where 0x800000738 is the address of the
footer as shown by hprobes

35

Carnegie Mellon

MALLOC: Optimizations

Carnegie Mellon

Basic Optimizations

B Optimize step-by-step. Don’t go all in at once.

B Basic optimizations -
= Segregated Lists
» Note: A decent implementation of explicit lists is enough to cross the
checkpoint.
= Optimizing the free block finding strategy
= Basic block splitting (when a larger size is requested than the size of the
free block)
= Coalescing of free blocks

37

Carnegie Mellon

Further Optimizations

B Eliminate footers in allocated blocks
= But, you still need to be able to implement coalescing
B Decrease the minimum block size
= You must then manage free blocks that are too small to hold the pointers for a
doubly linked free list
B Reduce headers below 8 bytes
= But, you must support all possible block sizes.
= Must then be able to handle blocks with sizes that are too large to encode in
the header
M Set up special regions of memory for small blocks
= Need to manage these and be able to free a block when given only the starting
address of its payload

38

Carnegie Mellon

SUMMARY

B There is no definite optimal solution, everything has trade offs.
Choose your pick !

Start early

Write the heapchecker as you go

Use gdb and the heapchecker generously
Modularise your code

Optimize gradually

Finish early and enjoy the Thanksgiving break :)

39

