18-600 Recitation #11
Malloc Lab

November 7th, 2017

Carnegie Mellon

Important Notes about Malloc Lab

B Malloc lab has been updated from previous years
B Supports a full 64 bit address space rather than 32 bit
B Encourages a new programming style
= Use structures instead of macros
= Study the baseline implementation of implicit allocator to get a better idea
B Divided into two phases:
= Checkpoint 1: Due date: 11/17
= Final: Due date: 11/27
B Try to finish Cache Lab by Thursday; it will help with Malloc and during a
much-needed Thanksgiving break!
B Get a correct, reasonably performing malloc by checkpoint
B Optimize malloc by final submission

Pointers: casting, arithmetic, and

dereferencing

Carnegie Mellon

Pointer casting

m Cast from
= <type_a>* to <type_b>*
« Gives back the same value
» Changes the behavior that will happen when dereferenced
= <type a>* to integer/ unsigned int / long
« Pointers are really just 8-byte numbers
« Taking advantage of this is an important part of malloc lab
« Be careful, though, as this can easily lead to errors

= integer/ unsigned int to <type a>*

Carnegie Mellon

Pointer arithmetic

s The expression ptr + a doesn’t mean the same thing
as it would if ptr were an integer.

s Example:
type a* pointer = .;
(void *) pointer2 = (void *) (pointer + a);

m This is really computing:
= pointer2 = pointer + (a * sizeof (type a))
* lea (pointer, a, sizeof(type a)), pointer2;

m Pointer arithmetic on void* is undefined

Pointer arithmetic

B int * ptr = (int *)0x12341230;
int * ptr2 = ptr + 1;

B char * ptr = (char *)0x12341230;
char * ptr2 = ptr + 1;

B int * ptr = (int *)0x12341230;
int * ptr2 = ((int *) (((char *) ptr) + 1));

Pointer arithmetic

B int * ptr = (int *)0x12341230;
int * ptr2 = ptr + 1; //ptr2 is 0x12341234

B char * ptr = (char *)0x12341230;
char * ptr2 = ptr + 1; //ptr2 is 0x12341231

B int * ptr = (int *)0x12341230;
int * ptr2 = ((int *) (((char *) ptr) + 1));
//ptr2 is 0x12341231

Carnegie Mellon

Pointer dereferencing

m Basics

= |t must be a POINTER type (or cast to one) at the time of
dereference

= Cannot dereference expressions with type void*

= Dereferencing a t * evaluates to a value with type t

Carnegie Mellon

Pointer dereferencing

s What gets “returned?”

int * ptrl = (int *) malloc(sizeof (int)) ;
*ptrl = Oxdeadbeef;

int vall = *ptrl;
(int) *((char *) ptrl);

int val2

What are vall and val2?

Carnegie Mellon

Pointer dereferencing

s What gets “returned?”

int * ptrl = (int *) malloc(sizeof (int)) ;
*ptrl = Oxdeadbeef;

int vall = *ptrl;
(int) *((char *) ptrl);

int val2

// vall = Oxdeadbeef;
// val2 = Oxffffffef;
What happened??

10

Malloc basics

B What is dynamic memory allocation?

B Terms you will need to know
= malloc/ calloc / realloc
= free
= sbrk
= payload
= fragmentation (internal vs. external)
= coalescing
= Bi-directional
= I[mmediate vs. Deferred

11

Concept

s Really, malloc only does three things:

1. Organize all blocks and store information about them in a
structured way.

2. Using the structure made in 1), choose an appropriate
location to allocate new memory.

3. Update the structure made in 1) when the user frees a
block of memory

12

Carnegie Mellon

Allocation Example

pl = malloc(4)
p2 = malloc(5)
p3 = malloc(6)
free (p2) R [7 1 1 i | |

P4 = mallcoc(2)

13

Carnegie Mellon

Fragmentation

= Internal fragmentation
= Result of payload being smaller than block size.
= void * ml = malloc(3); void * m2 = malloc(3);

= ml, m2 both have to be aligned to 16 bytes...

s External fragmentation

14

Carnegie Mellon

External Fragmentation

m Occurs when there is enough aggregate heap memory,
but no single free block is large enough

Pl = malloc(4)

P2 = malloc(5)

P3 = malloc(6)

free (p2)

p4 = malloc (6) Oops! (what would happen now?)

m Depends on the pattern of future requests

® Thus, difficult to measure

15

Goals

I. Run as fast as possible

2. Waste as little memory as possible
What kind of implementation to use?

B Implicit list, explicit list, segregated lists, binary tree methods ...etc
M Can use specialized strategies depending on the size of allocations
B Adaptive algorithms are fine, though not necessary to get 100%.

What fit algorithm to use?
B Best fit: choose the smallest block that is big enough to fit the requested

allocation size
B First fit / next fit: search linearly starting from some location, and pick the first

block that fits.
Which one’s faster, and which one uses less memory?

16

Implicit List

m From the root, can traverse across blocks using headers
which store the size of the block
s Can find a free block this way

m Can take a while to find a free block

= How would you know when you have to call sbrk?

17

Explicit List

s Improvement over implicit list
s From aroot, keep track of all free blocks in a (doubly)
linked list
= Remember a doubly linked list has pointers to next and previous
= Optimization: using a singly linked list instead (how could we do
this?)
= When malloc is called, can now find a free block quickly
= What happens if the list is a bunch of small free blocks but we want a
really big one?

= How can we speed this up?
18

Carnegie Mellon

Segregated List

= An optimization for explicit lists

s Can be thought of as multiple explicit lists
= What should we group by?

s Grouped by size — let us quickly find a block of the size we
want

s What size/number of buckets should we use?

= This is up to you to decide

19

Carnegie Mellon

Implementation Hurdles

How do we know where the blocks are?
How do we know how big the blocks are?
How do we know which blocks are free?

Remember: can’t buffer calls to malloc and free... must deal with them
real-time.

Remember: calls to £ree only takes a pointer, not a pointer and a size.
Solution: Need a data structure to store information on the “blocks”

= Where do | keep this data structure?
= We can’t allocate a space for it, that’s what we are writing!

20

Carnegie Mellon

The data structure

s Requirements:

= The data structure needs to tell us where the blocks are, how big
they are, and whether they’re free

= We need to be able to CHANGE the data structure during calls to
malloc and free

= We need to be able to find the next free block that is “a good fit
for” a given payload

= We need to be able to quickly mark a block as free/allocated

= We need to be able to detect when we’re out of blocks.
« What do we do when we’re out of blocks?

21

Carnegie Mellon

The data structure

= Common types

= |mplicit List
« Root -> blockl -> block2 -> block3 -> ...

= Explicit List
= Root -> free block 1 -> free block 2 -> free block 3 -> ...

= Segregated List
« Small-malloc root -> free small block 1 -> free small block 2 -> ...
» Medium-malloc root -> free medium block 1 -> ...
« Large-malloc root -> free block chunk1 -> ...

22

Carnegie Mellon

Playing with structures

m Consider the following structure, where a ‘block’ refers
to an allocation unit

s Each block consists of some metadata (header) and the
actual data (payload)

/* Basic declarations */ /* Basic declarations */
typedef uint64 t word_t; typedef uint64 t word_t;
static const size t wsize = sizeof(word_ t); static const size t wsize = sizeof(word_t);
typedef struct block { _> typedef struct block {
word_t header; // Header contains size + allocation flag
word_t alloc; word_t header;
char payload[9]; . . char payload[@];
} block_t; Why is this } block_t;

reasonable?
23

Playing with structures

s The contents of the header is populated as follows

/* Basic declarations */
/* Pack size and allocation bit into single
word */ typedef uint64 t word_t;
static const size t wsize = sizeof(word t);
static word_t pack(size_t size, bool alloc) {
typedef struct block {
// Header contains size + allocation flag
word_t header;
} char payload[0];
} block t;

return size | alloc;

24

Carnegie Mellon

Playing with structures

s How do we set the value in the header, given the block and values?

/* Set fields in block header */ /* Basic declarations */
static void write_header(block t *block, type?ef uint64Tt WOPd_FE '

size t size, bool alloc) { static const size_t wsize = sizeof(word_t);

block->header = pack(size, alloc); typedef struct bl?Ck {_ .
// Header contains size + allocation flag
} word_t header;
char payload[@];
} block t;

25

Playing with structures

s How do we extract the value of the size, given the header?
s How do we extract the value of the size, given pointer to block?

/* Extract size from header */
static size_t extract_size(word_t word) { /* Basic declarations */

return (word & ~(word_t) 0x7); typedef uint64_t word_t;
) static const size_t wsize = sizeof(word_t);
typedef struct block {
// Header contains size + allocation flag
word_t header;
char payload[0];
} block t;

/* Get block size */
static size_t get_size(block_t *block) {

return extract_size(block->header);

26

Carnegie Mellon

Playing with structures

= How do we write to the end of the block?

/* Set fields in block footer */ /* Basic declarations */
static void write_footer(block_t *block, type?ef uint64Tt WOPd_FE '
size t size, static const size_t wsize = sizeof(word_t);

bool alloc
) A typedef struct block {

word_t *footerp = (word_t *)((block->payload) + // Header contains size + allocation flag
get_size(block) - 2*wsize); word_t header;
char payload[@];
*footerp = pack(size, alloc); } block_t;

27

Carnegie Mellon

Playing with structures

s How do we get to the start of the block, given the pointer to the
payload?

/* Locate start of block, given pointer to payload */ /* Basic declarations */

static block t *payload to_header(void *bp) { typedef uint64_t word_t; '
static const size t wsize = sizeof(word t);
return (block t *)(((char *)bp) -

offsetof(block_t, payload)); typedef struct block {
- // Header contains size + allocation flag

} word_t header;
char payload[0];
} block t;

28

Carnegie Mellon

GDB Practice

s Using GDB well in Malloc lab can save you HOURS of
debugging time!
m Turn off gcc optimization before running GDB (-00)
= Don’t forget to turn it back on (-O3) for the benchmark!

5 commands to remember:;

1. backtrace

2. frame

3. disassemble
4. print <reg>
5. watch

29

Carnegie Mellon

Words of Wisdom

m Write a heap checker first. Please just do it and thank us later!
Check for conditions that you know your heap should have.

Printf <<<<< GDB

Use version control, otherwise you’ll regret it

Don’t feel bad about throwing away broken solutions!
Start early, read the handout carefully.

Warnings:

= Most existing Malloc literature from the book has slightly different
guidelines, they may be out of date

30

