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Important Notes about Malloc Lab

B Malloc lab has been updated from previous years
B Supports a full 64 bit address space rather than 32 bit
B Encourages a new programming style
= Use structures instead of macros
= Study the baseline implementation of implicit allocator to get a better idea
B Divided into two phases:
= Checkpoint 1: Due date: 11/17
= Final: Due date: 11/27
B Try to finish Cache Lab by Thursday; it will help with Malloc and during a
much-needed Thanksgiving break!
B Get a correct, reasonably performing malloc by checkpoint
B Optimize malloc by final submission



Pointers: casting, arithmetic, and

dereferencing
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Pointer casting

m Cast from
= <type_a>* to <type_b>*
« Gives back the same value
» Changes the behavior that will happen when dereferenced
= <type a>* to integer/ unsigned int / long
« Pointers are really just 8-byte numbers
« Taking advantage of this is an important part of malloc lab
« Be careful, though, as this can easily lead to errors

= integer/ unsigned int to <type a>*
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Pointer arithmetic

s The expression ptr + a doesn’t mean the same thing
as it would if ptr were an integer.

s Example:
type a* pointer = .;
(void *) pointer2 = (void *) (pointer + a);

m This is really computing:
= pointer2 = pointer + (a * sizeof (type a))
* lea (pointer, a, sizeof(type a)), pointer2;

m Pointer arithmetic on void* is undefined



Pointer arithmetic

B int * ptr = (int *)0x12341230;
int * ptr2 = ptr + 1;

B char * ptr = (char *)0x12341230;
char * ptr2 = ptr + 1;

B int * ptr = (int *)0x12341230;
int * ptr2 = ((int *) (((char *) ptr) + 1));



Pointer arithmetic

B int * ptr = (int *)0x12341230;
int * ptr2 = ptr + 1; //ptr2 is 0x12341234

B char * ptr = (char *)0x12341230;
char * ptr2 = ptr + 1; //ptr2 is 0x12341231

B int * ptr = (int *)0x12341230;
int * ptr2 = ((int *) (((char *) ptr) + 1));
//ptr2 is 0x12341231
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Pointer dereferencing

m Basics

= |t must be a POINTER type (or cast to one) at the time of
dereference

= Cannot dereference expressions with type void*

= Dereferencing a t * evaluates to a value with type t
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Pointer dereferencing

s What gets “returned?”

int * ptrl = (int *) malloc(sizeof (int)) ;
*ptrl = Oxdeadbeef;

int vall = *ptrl;
(int) *((char *) ptrl);

int val2

What are vall and val2?
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Pointer dereferencing

s What gets “returned?”

int * ptrl = (int *) malloc(sizeof (int)) ;
*ptrl = Oxdeadbeef;

int vall = *ptrl;
(int) *((char *) ptrl);

int val2

// vall = Oxdeadbeef;
// val2 = Oxffffffef;
What happened??
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Malloc basics

B What is dynamic memory allocation?

B Terms you will need to know
= malloc/ calloc / realloc
= free
= sbrk
= payload
= fragmentation (internal vs. external)
= coalescing
= Bi-directional
= I[mmediate vs. Deferred
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Concept

s Really, malloc only does three things:

1. Organize all blocks and store information about them in a
structured way.

2. Using the structure made in 1), choose an appropriate
location to allocate new memory.

3. Update the structure made in 1) when the user frees a
block of memory
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Allocation Example

pl = malloc(4)
p2 = malloc(5)
p3 = malloc(6)
free (p2) R [ 7 1 1 i | |

P4 = mallcoc(2)
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Fragmentation

= Internal fragmentation
= Result of payload being smaller than block size.
= void * ml = malloc(3); void * m2 = malloc(3);

= ml, m2 both have to be aligned to 16 bytes...

s External fragmentation
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External Fragmentation

m Occurs when there is enough aggregate heap memory,
but no single free block is large enough

Pl = malloc(4)

P2 = malloc(5)

P3 = malloc(6)

free (p2)

p4 = malloc (6) Oops! (what would happen now?)

m Depends on the pattern of future requests

® Thus, difficult to measure
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Goals

I. Run as fast as possible

2.  Waste as little memory as possible
What kind of implementation to use?

B Implicit list, explicit list, segregated lists, binary tree methods ...etc
M Can use specialized strategies depending on the size of allocations
B Adaptive algorithms are fine, though not necessary to get 100%.

What fit algorithm to use?
B Best fit: choose the smallest block that is big enough to fit the requested

allocation size
B First fit / next fit: search linearly starting from some location, and pick the first

block that fits.
Which one’s faster, and which one uses less memory?
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Implicit List

m From the root, can traverse across blocks using headers
which store the size of the block
s Can find a free block this way

m Can take a while to find a free block

= How would you know when you have to call sbrk?
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Explicit List

s Improvement over implicit list
s From aroot, keep track of all free blocks in a (doubly)
linked list
= Remember a doubly linked list has pointers to next and previous
= Optimization: using a singly linked list instead (how could we do
this?)
= When malloc is called, can now find a free block quickly
= What happens if the list is a bunch of small free blocks but we want a
really big one?

= How can we speed this up?
18
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Segregated List

=  An optimization for explicit lists

s Can be thought of as multiple explicit lists
= What should we group by?

s Grouped by size — let us quickly find a block of the size we
want

s  What size/number of buckets should we use?

= This is up to you to decide
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Implementation Hurdles

How do we know where the blocks are?
How do we know how big the blocks are?
How do we know which blocks are free?

Remember: can’t buffer calls to malloc and free... must deal with them
real-time.

Remember: calls to £ree only takes a pointer, not a pointer and a size.
Solution: Need a data structure to store information on the “blocks”

= Where do | keep this data structure?
= We can’t allocate a space for it, that’s what we are writing!
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The data structure

s Requirements:

= The data structure needs to tell us where the blocks are, how big
they are, and whether they’re free

= We need to be able to CHANGE the data structure during calls to
malloc and free

= We need to be able to find the next free block that is “a good fit
for” a given payload

= We need to be able to quickly mark a block as free/allocated

= We need to be able to detect when we’re out of blocks.
« What do we do when we’re out of blocks?
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The data structure

= Common types

= |mplicit List
« Root -> blockl -> block2 -> block3 -> ...

= Explicit List
= Root -> free block 1 -> free block 2 -> free block 3 -> ...

= Segregated List
« Small-malloc root -> free small block 1 -> free small block 2 -> ...
» Medium-malloc root -> free medium block 1 -> ...
« Large-malloc root -> free block chunk1 -> ...
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Playing with structures

m Consider the following structure, where a ‘block’ refers
to an allocation unit

s Each block consists of some metadata (header) and the
actual data (payload)

/* Basic declarations */ /* Basic declarations */
typedef uint64 t word_t; typedef uint64 t word_t;
static const size t wsize = sizeof(word_ t); static const size t wsize = sizeof(word_t);
typedef struct block { _> typedef struct block {
word_t header; // Header contains size + allocation flag
word_t alloc; word_t header;
char payload[9]; . . char payload[@];
} block_t; Why is this } block_t;

reasonable?
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Playing with structures

s The contents of the header is populated as follows

/* Basic declarations */
/* Pack size and allocation bit into single
word */ typedef uint64 t word_t;
static const size t wsize = sizeof(word t);
static word_t pack(size_t size, bool alloc) {
typedef struct block {
// Header contains size + allocation flag
word_t header;
} char payload[0];
} block t;

return size | alloc;
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Playing with structures

s How do we set the value in the header, given the block and values?

/* Set fields in block header */ /* Basic declarations */
static void write_header(block t *block, type?ef uint64Tt WOPd_FE '

size t size, bool alloc) { static const size_t wsize = sizeof(word_t);

block->header = pack(size, alloc); typedef struct bl?Ck {_ .
// Header contains size + allocation flag
} word_t header;
char payload[@];
} block t;
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Playing with structures

s How do we extract the value of the size, given the header?
s How do we extract the value of the size, given pointer to block?

/* Extract size from header */
static size_t extract_size(word_t word) { /* Basic declarations */

return (word & ~(word_t) 0x7); typedef uint64_t word_t;
) static const size_t wsize = sizeof(word_t);
typedef struct block {
// Header contains size + allocation flag
word_t header;
char payload[0];
} block t;

/* Get block size */
static size_t get_size(block_t *block) {

return extract_size(block->header);
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Playing with structures

= How do we write to the end of the block?

/* Set fields in block footer */ /* Basic declarations */
static void write_footer(block_t *block, type?ef uint64Tt WOPd_FE '
size t size, static const size_t wsize = sizeof(word_t);

bool alloc
) A typedef struct block {

word_t *footerp = (word_t *)((block->payload) + // Header contains size + allocation flag
get_size(block) - 2*wsize); word_t header;
char payload[@];
*footerp = pack(size, alloc); } block_t;
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Playing with structures

s How do we get to the start of the block, given the pointer to the
payload?

/* Locate start of block, given pointer to payload */ /* Basic declarations */

static block t *payload to_header(void *bp) { typedef uint64_t word_t; '
static const size t wsize = sizeof(word t);
return (block t *)(((char *)bp) -

offsetof(block_t, payload)); typedef struct block {
- // Header contains size + allocation flag

} word_t header;
char payload[0];
} block t;
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GDB Practice

s Using GDB well in Malloc lab can save you HOURS of
debugging time!
m Turn off gcc optimization before running GDB (-00)
= Don’t forget to turn it back on (-O3) for the benchmark!

5 commands to remember:;

1. backtrace

2. frame

3. disassemble
4. print <reg>
5. watch
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Words of Wisdom

m Write a heap checker first. Please just do it and thank us later!
Check for conditions that you know your heap should have.

Printf <<<<< GDB

Use version control, otherwise you’ll regret it

Don’t feel bad about throwing away broken solutions!
Start early, read the handout carefully.

Warnings:

= Most existing Malloc literature from the book has slightly different
guidelines, they may be out of date
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