18-600: Recitation #8
Oct 17th, 2017

Linking & Loading

Carnegie Mellon

Reminders

B Shell Lab is out! You should’ve started poking around fork/exec/signal
handlers.

B Remember to watch out for race conditions and signal
delivery/reception/masking.

Bl Remember to follow style guidelines (don’t lose out on points :D):
http://www.ece.cmu.edu/~ece600/codestyle.html

B We will be conducting a mock midterm exam next week. Be prepared!

http://www.ece.cmu.edu/~ece600/codestyle.html

Carnegie Mellon

Today

m Linking
= Whatis it and how does it work?
= Symbol resolution
= Dynamic v/s Static linking
= Loading

Example C Program

int sum(int *a, int n); int sum(int *a, int n)
{

int array[2] = {1, 2}; inti,s =0;
int main() for (i=0;i<n;i++){
{ s += ali];

int val = sum(array, 2); }

return val; main.c return s; sum.c
} }

Carnegie Mellon

Static Linking

m Programs are translated and linked using a compiler driver:

* linux> gcc -0Og -0 prog main.c sum.cC

= linux> ./prog

maln*'c sum '+° Source files
Translators Translators
(cpp, ccl, as) (cpp, ccl, as)
main.o s,in. o Separately compiled

relocatable object files

Linker (1d)

pr!g Fully linked executable object file
(contains code and data for all functions
defined in main.c and sum. c)

Why Linkers?

m Reason 1: Modularity

= Program can be written as a collection of smaller source files,
rather than one monolithic mass.

= Can build libraries of common functions (more on this later)
= e.g., Math library, standard C library

Why Linkers? (cont)

m Reason 2: Efficiency

= Time: Separate compilation
= Change one source file, compile, and then relink.
= No need to recompile other source files.

= Space: Libraries
= Common functions can be aggregated into a single file...

= Yet executable files and running memory images contain only
code for the functions they actually use.

Carnegie Mellon

What Do Linkers Do?

m Step 1: Symbol resolution

= Programs define and reference symbols (global variables and functions):
- void swap() {..} /* define symbol swap */
- swap() ; /* reference symbol swap */
- int *xp = &x; /* define symbol xp, reference x */

= Symbol definitions are stored in object file (by assembler) in symbol table.
= Symbol table is an array of structs
= Each entry includes name, size, and location of symbol.

= During symbol resolution step, the linker associates each symbol reference
with exactly one symbol definition. g

Carnegie Mellon

What Do Linkers Do? (cont)

m Step 2: Relocation
= Merges separate code and data sections into single sections

= Relocates symbols from their relative locations in the . o files to
their final absolute memory locations in the executable.

= Updates all references to these symbols to reflect their new
positions.

Let’s look at these two steps in more
detail....

Carnegie Mellon

Three Kinds of Object Files (Modules)

m Relocatable object file (. o file)

= Contains code and data in a form that can be combined with other
relocatable object files to form executable object file.

- Each . ofile is produced from exactly one source (. c) file
m Executable object file (a . out file)

= Contains code and data in a form that can be copied directly into
memory and then executed.

m Shared object file (. so file)

= Special type of relocatable object file that can be loaded into
memory and linked dynamically, at either load time or run-time.

= Called Dynamic Link Libraries (DLLs) by Windows

10

Carnegie Mellon

Executable and Linkable Format (ELF)

m Standard binary format for object files

B One unified format for
= Relocatable object files (. o),
= Executable object files (a.out)

= Shared object files (. so)

m Generic name: ELF binaries

11

Carnegie Mellon

ELF Object File Format

Elf header

* Word size, byte ordering, file type (.0, exec, .so), machine type, etc.
B Segment header table ELF header 0

= Page size, virtual addresses memory segments (sections), segment Segment header table

21265, (required for executables)

B .textsection . text section

= Code .rodata section
B .rodatasection .data section

= Read only data: constant strings, jump tables,bss section

. symtab section

[| .data section .
.rel. txt section

= |nitialized global variables -
.rel.data section

.bss section X
- .debug section

= Uninitialized global variables
= “Block Started by Symbol” Section header table

= “Better Save Space”

= Has section header but occupies no space 12

ELF Object File Format (cont.)

.symtab section
* Symbol table

* Procedure and static variable names 0
= Section names and locations ELF header
B .rel.text section Segment header table
= Relocation info for .text section (required for executables)
= Addresses of instructions that will need to be modified in the . text section
executable
= Instructions for modifying. .rodata section
B .rel.datasection .data section
* Relocation info for .data section .bss section
= Addresses of pointer data that will need to be modified in the merged N
executable .symtab section
B .debug section .rel.txt section
* |Info for symbolic debugging (gcc -g) .rel.data section
[| Section header table . debug section
= Offsets and sizes of each section -
Section header table

13

Carnegie Mellon

Linker Symbols
Why do we need symbol tables in the first place?
B Global symbols
= Symbols defined by module m that can be referenced by other modules.
= E.g.: non-static C functions and non-static global variables.

Bl External symbols

= Global symbols that are referenced by module m but defined by some other
module.

B Local symbols
= Symbols that are defined and referenced exclusively by module m.

= E.g.: Cfunctions and global variables defined with the static attribute.
= Local linker symbols are not local program variables

14

Carnegie Mellon

Step 1: Symbol Resolution

..that’s defined here Referencing

a global...
int syMm(int *a, int n); int sum(int *a, int n)
{

int array[2] = {1, 2}; ilmht i, s = 0;
int main () or (i 0; i < n; i++) {
{ s += :

intfval = sum(array, 2); }

reffurn val return s;
} }

maJ.n C sum.cC

Defmmg \

a global Referencmg Linker knows
Linker knows a global... nothingof i or s

nothing of val ...that’s defined here 5

How Linker Resolves Duplicate Symbol

Definitions

m Program symbols are either strong or weak
= Strong: procedures and initialized globals

= Weak: uninitialized globals

pl.c p2.c
strong — > |int foo=5; int foo; | weak
— 5 <+ stron
strone pL() { p2() { ;
} }

16

Carnegie Mellon

Linker’s Symbol Rules

Il Rule 1: Multiple strong symbols are not allowed
= Each item can be defined only once
= Otherwise: Linker error

B Rule 2: Given a strong symbol and multiple weak symbols, choose the strong
symbol

= References to the weak symbol resolve to the strong symbol

Bl Rule 3: If there are multiple weak symbols, pick an arbitrary one
= Can override this with gcc =fno-common

17

Carnegie Mellon

Linker Puzzles

int x; . .
pl() {} pl() {} Link time error: two strong symbols (p1)
int x; ks 55 References to x will refer to the same
pl() {} p2() {} e e s . .

uninitialized int. Is this what you really want?
int x; doubl 5
s oo 20 1 Writes to x in p2 might (based on which x is
P10 {} resolved first) overwrite y! Evil!
int x=7; double x; 3 . 9 ’ |
. T Writes to x in p2 will overwrite y!
PL() {} Nasty!
int x=7; int x; References to x will refer to the same initialized
pl() {} p2() {}

variable.

Nightmare scenario: two identical weak structs, compiled by different compilers

with different alignment rules. 18

Carnegie Mellon

Global Variables

m Avoid them, if you can!

m Otherwise
= Use static if you can - hides the symbol from the Linker!
= |nitialize if you define a global variable - make it a strong symbol!

= Use extern if you reference an external global variable - help the
Linker out!

19

Carnegie Mellon

Step 2: Relocation

Relocatable Object Files Executable Object File

System code . text Headers
System data .data System code A
\ main ()
main.o > e
sum ()
main () .text +
int data More system code
array[2]={1,2} System data }
SUum. o] int array[2]={1,2} -data
sum () . text .symtab
.debug

20

Relocation Entries

int array[2] = {1, 2};

int main()

{
int val = sum(array, 2);
return wval;

Placeholder values

Carnegie Mellon

0000000000000000 <main>:
0: 48 83 ec 08 sub

4: be 02 00 00 00 mov
9: bf 00 00 00 0O mov $0x0, %edi
a: R X86 64 32 array
e: e8 00 00 00 00 callg 13 <main+0x13> #
f: R X86 64 PC32 sum-0x4
13: 48 83 c4 08 add $0x8,%rsp
17: c3 retq

%edi = &array
Relocation entry

Relocation entry

main.o

Source: objdump -r —-d main.o 21

Carnegie Mellon

RelOcated o teXt SeCtiOn Actual, in-code values
=

00000000004004d0 <main>:
4004d0: 48 83 ec 08 sub $0x8,%rsp

4004d4: be 02 00 00 00 mov $0x2, %esj

40044d9: bf 18 10 60 00 mov $0x601018 ,%edi # %edi = &array
4004de: e8 callqg 4004e8~<sum> # sum()

4004e3: 48 83 c4 08 add $0x8,%rsp

4004e7: c3 retq

00000000004004e8 <sum>:

4004e8: b8 00 00 00 0O mov $0x0, %eax

4004ed: ba 00 00 00 00 mov $0x0, %edx

4004f2: eb 09 jmp 4004fd <sum+0x15>
4004f4: 48 63 ca movslqg %edx, $rcx

4004f£7: 03 04 8f add ($rdi, %$rcx,4) ,%eax
4004fa: 83 c2 01 add $0x1, %edx

4004fd: 39 f2 cmp %esi, $edx

4004ff: 7c £3 jl 4004f4 <sum+0xc>
400501: £3 c3 repz retq

Using PC-relative addressing for sum(): 0x4004e8 = 0x4004e3 +
Source: objdump -dx prog 99

Loading Executable Object Files

Executable Object File

ELF header

0

Program header table
(required for executables)

.init section

.text section

.rodata section

.data section

.bss section

| —

.symtab

.debug

Jine

.strtab

Section header table
(required for relocatables)

BSS is different

0x400000
0

Kernel virtual memory

User stack
(created at runtime)

Memory-mapped region for
shared libraries

T

Run-time heap
(created bymalloc)

Read/write data segment
(.data, .bss)

Read-only code segment
(.init, .text, .rodata)

Unused

Carnegie Mellon

Memory
I invisible to
user code

+—0Q

$rsp
(stack
pointer)

~ brk

Loaded
from
the
executable
file
23

Carnegie Mellon

Packaging Commonly Used Functions

m How to package functions commonly used by programmers?

= Math, I/0, memory management, string manipulation, etc.

m Awkward, given the linker framework so far:

= Option 1: Put all functions into a single source file
= Programmers link big object file into their programs
= Space and time inefficient

= Option 2: Put each function in a separate source file

= Programmers explicitly link appropriate binaries into their
programs

= More efficient, but burdensome on the programmer 2

Carnegie Mellon

Old-fashioned Solution: Static Libraries

m Static libraries (.a archive files)

= Concatenate related relocatable object files into a single file with an
index (called an archive).

= Enhance linker so that it tries to resolve unresolved external references
by looking for the symbols in one or more archives.

= |f an archive member file resolves reference, link it into the executable.

25

Carnegie Mellon

Creating Static Libraries

ato;'. .C printf .C randpm.c
Translator Translator Translator
atoi.o printf .0 ran tm .0
=2 0 /
Arthiver (ar) unix>_ ar rs libc.a \
+ atoi.o printf.o .. random.o
libc.a C standard library

m Archiver allows incremental updates
m Recompile function that changes and replace .o file in archive.

26

Carnegie Mellon

Linking with
Static Libraries

libvector.a
A

/ \

{

#include <stdio.h>
#include "vector.h"

int x[2] = {1, 2};
int y[2] = {3, 4};
int z[2];

int main ()

addvec(x, y, z, 2);
printf("z = [%d %d]\n”,
z[0], z[1]);

return O;

main2.c

void addvec (int *x, int *y,
int *z, int n) {
int i;

for (i = 0; i < n; i++)
z[i] = x[i] + y[il:;

} addvec.

void multvec (int *x, int *y,
int *z, int n)

{
int i;
for (1 = 0; i < n; i++)
z[i] = x[i] * y[i]’
} multvec.

27

Carnegie Mellon

Linking with Static Libraries

addvec.o multvec.o

Y Y

main2.c vector.h Archiver Libc is included by
(ar) default, if used
Translators
(cpp, ccl, as) libvector.a libec.a Static libraries
Relocatable main2.o addvec.o printf.o and any other
object files \ modules called by printf.o
Linker (1d)
prog2c Fully linked

executable object file

“c” for “compile-time” ”

Carnegie Mellon

Using Static Libraries

B Linker’s algorithm for resolving external references:
= Scan .o files and .a files in the command line order.

= During the scan, keep a list of the current unresolved references.

= As each new .o or .afile, obj, is encountered, try to resolve each unresolved
reference in the list against the symbols defined in obj.

= |f any entries in the unresolved list at end of scan, then error.

B Problem:
= Command line order matters!
= Moral: put libraries at the end of the command line.

unix> gcc -L. libtest.o -1lmine
unix> gcc -L. -lmine libtest.o
libtest.o: In function "main’':
libtest.o(.text+0x4) : undefined reference to "libfun'

29

Carnegie Mellon

Modern Solution: Shared Libraries

m Static libraries have the following disadvantages:
= Duplication in the stored executables (every function needs libc)
= Duplication in the running executables

= Minor bug fixes of system libraries require each application to explicitly
relink

m Modern solution: Shared Libraries

= Object files that contain code and data that are loaded and linked into
an application dynamically, at either load-time or run-time

= Also called: dynamic link libraries, DLLs, . so files

30

Carnegie Mellon

Shared Libraries (cont.)

B Dynamic linking can occur when executable is first loaded and run (load-time linking).
= Common case for Linux, handled automatically by the dynamic linker (ld-linux.so).
= Standard C library (libc.so) usually dynamically linked.

B Dynamic linking can also occur after program has begun
(run-time linking).

= |n Linux, this is done by calls to the dlopen() interface.
* Distributing software.
= High-performance web servers.

= Runtime library interpositioning.

B Shared library routines can be shared by multiple processes.

= More on this when we learn about virtual memory

AN

Carnegie Mellon

Dynamic Linking at Load-time

malrllZ -C Vethr'h unix> gcc -shared -o libvector.so \

addvec.c multvec.c

Translators
(cpp, ccl, as) libe.so

l libvector. so

ReJ:ocataI.)le main2.o
object file l

Relocation and symbol table info
Linker encodes what to expect at
s (e load-time

|

Partially linked prog21
executable object file l

Loader (execve) libc.so

libvector. so

Code and data

Fully linked
executable
in memory

A A

Dynamic linker (ld-linux.so)

32

Dynamic Linking at Run-time

Carnegie Mell

#include <stdio.h>
#include <stdlib.h>
#include <dlfecn.h>

int x[2] = {1, 2};
int y[2] = {3, 4};
int z[2];

int main()

{
void *handle;
void (*addvec) (int *, int *, int *, int);
char *error;

/* Dynamically load the shared library that contains addvec() */
handle = dlopen("./libvector.so", RTLD_LAZY) ;
if ('handle) {
fprintf (stderr, "%s\n", dlerror());
exit(1l);
}

/* Get a pointer to the addvec() function we just loaded */
addvec = dlsym(handle, "addvec");

if ((error = dlerror()) != NULL) {
fprintf (stderr, "%s\n", error);
exit(1l);

}

/* Now we can call addvec() just like any other function */
addvec(x, y, z, 2);
printf("z = [%d %d]\n", z[0], z[1]);

/* Unload the shared library */

if (dlclose(handle) < 0) {
fprintf (stderr, "%s\n", dlerror());
exit(1l);

}

return O;

dll.c

33

Carnegie Mellon

Linking Summary

m Linking is a technique that allows programs to be
constructed from multiple object files.

m Linking can happen at different times in a program’s
lifetime:

= Compile time (when a program is compiled)
* Load time (when a program is loaded into memory)

= Run time (while a program is executing)

m Understanding linking can help you avoid nasty errors and
make you a better programmer.

34

Carnegie Mellon

Shell Lab Discussion / OH

35

