
Carnegie Mellon

1

18-600: Recitation #8
Oct 17th, 2017

Linking & Loading

Carnegie Mellon

2

Reminders

⬛ Shell Lab is out! You should’ve started poking around fork/exec/signal
handlers.

⬛ Remember to watch out for race conditions and signal
delivery/reception/masking.

⬛ Remember to follow style guidelines (don’t lose out on points :D):
http://www.ece.cmu.edu/~ece600/codestyle.html

⬛ We will be conducting a mock midterm exam next week. Be prepared!

http://www.ece.cmu.edu/~ece600/codestyle.html

Carnegie Mellon

3

Today

⬛ Linking
▪ What is it and how does it work?

▪ Symbol resolution

▪ Dynamic v/s Static linking

▪ Loading

Carnegie Mellon

4

Example C Program

int sum(int *a, int n);

int array[2] = {1, 2};

int main()
{
 int val = sum(array, 2);
 return val;
}

int sum(int *a, int n)
{
 int i, s = 0;

 for (i = 0; i < n; i++) {
 s += a[i];
 }
 return s;
}

main.c sum.c

Carnegie Mellon

5

Static Linking
⬛ Programs are translated and linked using a compiler driver:

▪ linux> gcc -Og -o prog main.c sum.c

▪ linux> ./prog

Linker (ld)

Translators
(cpp, cc1, as)

main.c

main.o

Translators
(cpp, cc1, as)

sum.c

sum.o

prog

Source files

Separately compiled
relocatable object files

Fully linked executable object file
(contains code and data for all functions
defined in main.c and sum.c)

Carnegie Mellon

6

Why Linkers?
⬛ Reason 1: Modularity

▪ Program can be written as a collection of smaller source files,
rather than one monolithic mass.

▪ Can build libraries of common functions (more on this later)

▪ e.g., Math library, standard C library

Carnegie Mellon

7

Why Linkers? (cont)
⬛ Reason 2: Efficiency

▪ Time: Separate compilation

▪ Change one source file, compile, and then relink.

▪ No need to recompile other source files.

▪ Space: Libraries

▪ Common functions can be aggregated into a single file...

▪ Yet executable files and running memory images contain only
code for the functions they actually use.

Carnegie Mellon

8

What Do Linkers Do?
⬛ Step 1: Symbol resolution

▪ Programs define and reference symbols (global variables and functions):

▪ void swap() {…} /* define symbol swap */
▪ swap(); /* reference symbol swap */
▪ int *xp = &x; /* define symbol xp, reference x */

▪ Symbol definitions are stored in object file (by assembler) in symbol table.

▪ Symbol table is an array of structs
▪ Each entry includes name, size, and location of symbol.

▪ During symbol resolution step, the linker associates each symbol reference
with exactly one symbol definition.

Carnegie Mellon

9

What Do Linkers Do? (cont)
⬛ Step 2: Relocation

▪ Merges separate code and data sections into single sections

▪ Relocates symbols from their relative locations in the .o files to
their final absolute memory locations in the executable.

▪ Updates all references to these symbols to reflect their new
positions.

Let’s look at these two steps in more
detail….

Carnegie Mellon

10

Three Kinds of Object Files (Modules)
⬛ Relocatable object file (.o file)

▪ Contains code and data in a form that can be combined with other
relocatable object files to form executable object file.

▪ Each .o file is produced from exactly one source (.c) file

⬛ Executable object file (a.out file)
▪ Contains code and data in a form that can be copied directly into

memory and then executed.

⬛ Shared object file (.so file)
▪ Special type of relocatable object file that can be loaded into

memory and linked dynamically, at either load time or run-time.

▪ Called Dynamic Link Libraries (DLLs) by Windows

Carnegie Mellon

11

Executable and Linkable Format (ELF)
⬛ Standard binary format for object files

⬛ One unified format for
▪ Relocatable object files (.o),

▪ Executable object files (a.out)

▪ Shared object files (.so)

⬛ Generic name: ELF binaries

Carnegie Mellon

12

ELF Object File Format
⬛ Elf header

▪ Word size, byte ordering, file type (.o, exec, .so), machine type, etc.

⬛ Segment header table

▪ Page size, virtual addresses memory segments (sections), segment
sizes.

⬛ .text section

▪ Code

⬛ .rodata section

▪ Read only data: constant strings, jump tables, ...

⬛ .data section

▪ Initialized global variables

⬛ .bss section

▪ Uninitialized global variables

▪ “Block Started by Symbol”

▪ “Better Save Space”

▪ Has section header but occupies no space

ELF header
Segment header table

(required for executables)
.text section

.rodata section

.bss section

.symtab section

.rel.txt section

.rel.data section

.debug section

Section header table

0

.data section

Carnegie Mellon

13

ELF Object File Format (cont.)
⬛ .symtab section

▪ Symbol table

▪ Procedure and static variable names

▪ Section names and locations

⬛ .rel.text section
▪ Relocation info for .text section

▪ Addresses of instructions that will need to be modified in the
executable

▪ Instructions for modifying.

⬛ .rel.data section
▪ Relocation info for .data section

▪ Addresses of pointer data that will need to be modified in the merged
executable

⬛ .debug section
▪ Info for symbolic debugging (gcc -g)

⬛ Section header table

▪ Offsets and sizes of each section

ELF header
Segment header table

(required for executables)
.text section

.rodata section

.bss section

.symtab section

.rel.txt section

.rel.data section

.debug section

Section header table

0

.data section

Carnegie Mellon

14

Linker Symbols
⬛ Global symbols

▪ Symbols defined by module m that can be referenced by other modules.
▪ E.g.: non-static C functions and non-static global variables.

⬛ External symbols
▪ Global symbols that are referenced by module m but defined by some other

module.

⬛ Local symbols
▪ Symbols that are defined and referenced exclusively by module m.
▪ E.g.: C functions and global variables defined with the static attribute.
▪ Local linker symbols are not local program variables

Why do we need symbol tables in the first place?

Carnegie Mellon

15

Step 1: Symbol Resolution

int sum(int *a, int n);

int array[2] = {1, 2};

int main()
{
 int val = sum(array, 2);
 return val;
}

main.c

int sum(int *a, int n)
{
 int i, s = 0;

 for (i = 0; i < n; i++) {
 s += a[i];
 }
 return s;
}

sum.c

Referencing
a global…

Defining
a global

Linker knows
nothing of val

Referencing
a global…

…that’s defined here

Linker knows
nothing of i or s

…that’s defined here

Carnegie Mellon

16

How Linker Resolves Duplicate Symbol
Definitions

⬛ Program symbols are either strong or weak
▪ Strong: procedures and initialized globals

▪ Weak: uninitialized globals

int foo=5;

p1() {
}

int foo;

p2() {
}

p1.c p2.c

strong

weak

strong

strong

Carnegie Mellon

17

Linker’s Symbol Rules
⬛ Rule 1: Multiple strong symbols are not allowed

▪ Each item can be defined only once

▪ Otherwise: Linker error

⬛ Rule 2: Given a strong symbol and multiple weak symbols, choose the strong
symbol

▪ References to the weak symbol resolve to the strong symbol

⬛ Rule 3: If there are multiple weak symbols, pick an arbitrary one

▪ Can override this with gcc –fno-common

Carnegie Mellon

18

Linker Puzzles

int x;
p1() {}

int x;
p2() {}

int x;
int y;
p1() {}

double x;
p2() {}

int x=7;
int y=5;
p1() {}

double x;
p2() {}

int x=7;
p1() {}

int x;
p2() {}

int x;
p1() {} p1() {} Link time error: two strong symbols (p1)

References to x will refer to the same
uninitialized int. Is this what you really want?

Writes to x in p2 might (based on which x is
resolved first) overwrite y! Evil!

Writes to x in p2 will overwrite y!
Nasty!

Nightmare scenario: two identical weak structs, compiled by different compilers
with different alignment rules.

References to x will refer to the same initialized
variable.

Carnegie Mellon

19

Global Variables
⬛ Avoid them, if you can!

⬛ Otherwise
▪ Use static if you can - hides the symbol from the Linker!

▪ Initialize if you define a global variable - make it a strong symbol!

▪ Use extern if you reference an external global variable - help the
Linker out!

Carnegie Mellon

20

Step 2: Relocation

main()

main.o

sum()

sum.o

System code

int
array[2]={1,2}

System data

Relocatable Object Files

.text

.data

.text

.data

.text

Headers

main()

sum()

0

More system code

Executable Object File

.text

.symtab
.debug

.data

System code

System data

int array[2]={1,2}

Carnegie Mellon

21

Relocation Entries

Source: objdump –r –d main.o

0000000000000000 <main>:
 0: 48 83 ec 08 sub $0x8,%rsp
 4: be 02 00 00 00 mov $0x2,%esi
 9: bf 00 00 00 00 mov $0x0,%edi # %edi = &array
 a: R_X86_64_32 array # Relocation entry

 e: e8 00 00 00 00 callq 13 <main+0x13> # sum()
 f: R_X86_64_PC32 sum-0x4 # Relocation entry
 13: 48 83 c4 08 add $0x8,%rsp
 17: c3 retq

main.o

int array[2] = {1, 2};

int main()
{
 int val = sum(array, 2);
 return val;
}

main.c

Placeholder values

Carnegie Mellon

22

Relocated .text section
00000000004004d0 <main>:
 4004d0: 48 83 ec 08 sub $0x8,%rsp
 4004d4: be 02 00 00 00 mov $0x2,%esi
 4004d9: bf 18 10 60 00 mov $0x601018,%edi # %edi = &array
 4004de: e8 05 00 00 00 callq 4004e8 <sum> # sum()
 4004e3: 48 83 c4 08 add $0x8,%rsp
 4004e7: c3 retq

00000000004004e8 <sum>:
 4004e8: b8 00 00 00 00 mov $0x0,%eax
 4004ed: ba 00 00 00 00 mov $0x0,%edx
 4004f2: eb 09 jmp 4004fd <sum+0x15>
 4004f4: 48 63 ca movslq %edx,%rcx
 4004f7: 03 04 8f add (%rdi,%rcx,4),%eax
 4004fa: 83 c2 01 add $0x1,%edx
 4004fd: 39 f2 cmp %esi,%edx
 4004ff: 7c f3 jl 4004f4 <sum+0xc>
 400501: f3 c3 repz retq

Using PC-relative addressing for sum(): 0x4004e8 = 0x4004e3 + 0x5
Source: objdump -dx prog

Actual, in-code values

Carnegie Mellon

23

Loading Executable Object Files

ELF header
Program header table

(required for executables)

.text section

.data section

.bss section

.symtab

.debug

Section header table
(required for relocatables)

0
Executable Object File

Kernel virtual memory

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused0

%rsp
(stack
pointer)

Memory
invisible to
user code

brk

0x400000

Read/write data segment
(.data, .bss)

Read-only code segment
(.init, .text, .rodata)

Loaded
from
the
executable
file

.rodata section

.line

.init section

.strtab

BSS is different!

Carnegie Mellon

24

Packaging Commonly Used Functions
⬛ How to package functions commonly used by programmers?

▪ Math, I/O, memory management, string manipulation, etc.

⬛ Awkward, given the linker framework so far:
▪ Option 1: Put all functions into a single source file

▪ Programmers link big object file into their programs

▪ Space and time inefficient

▪ Option 2: Put each function in a separate source file

▪ Programmers explicitly link appropriate binaries into their
programs

▪ More efficient, but burdensome on the programmer

Carnegie Mellon

25

Old-fashioned Solution: Static Libraries

⬛ Static libraries (.a archive files)
▪ Concatenate related relocatable object files into a single file with an

index (called an archive).

▪ Enhance linker so that it tries to resolve unresolved external references
by looking for the symbols in one or more archives.

▪ If an archive member file resolves reference, link it into the executable.

Carnegie Mellon

26

Creating Static Libraries

Translator

atoi.c

atoi.o

Translator

printf.c

printf.o

libc.a

Archiver (ar)

... Translator

random.c

random.o

unix> ar rs libc.a \
 atoi.o printf.o … random.o

C standard library

⬛ Archiver allows incremental updates

⬛ Recompile function that changes and replace .o file in archive.

Carnegie Mellon

27

Linking with
Static Libraries

#include <stdio.h>
#include "vector.h"

int x[2] = {1, 2};
int y[2] = {3, 4};
int z[2];

int main()
{
 addvec(x, y, z, 2);
 printf("z = [%d %d]\n”,
 z[0], z[1]);
 return 0;
} main2.c

void addvec(int *x, int *y,
 int *z, int n) {
 int i;

 for (i = 0; i < n; i++)
 z[i] = x[i] + y[i];
}

void multvec(int *x, int *y,
 int *z, int n)
{
 int i;

 for (i = 0; i < n; i++)
 z[i] = x[i] * y[i];
} multvec.c

addvec.c

libvector.a

Carnegie Mellon

28

Linking with Static Libraries

Translators
(cpp, cc1, as)

main2.c

main2.o

libc.a

Linker (ld)

prog2c

printf.o and any other
modules called by printf.o

libvector.a

addvec.o

Static libraries

Relocatable
object files

Fully linked
executable object file

vector.h Archiver
(ar)

addvec.o multvec.o

“c” for “compile-time”

Libc is included by
default, if used

Carnegie Mellon

29

Using Static Libraries

⬛ Linker’s algorithm for resolving external references:
▪ Scan .o files and .a files in the command line order.
▪ During the scan, keep a list of the current unresolved references.
▪ As each new .o or .a file, obj, is encountered, try to resolve each unresolved

reference in the list against the symbols defined in obj.
▪ If any entries in the unresolved list at end of scan, then error.

⬛ Problem:
▪ Command line order matters!
▪ Moral: put libraries at the end of the command line.

unix> gcc -L. libtest.o -lmine
unix> gcc -L. -lmine libtest.o
libtest.o: In function `main':
libtest.o(.text+0x4): undefined reference to `libfun'

Carnegie Mellon

30

Modern Solution: Shared Libraries
⬛ Static libraries have the following disadvantages:

▪ Duplication in the stored executables (every function needs libc)

▪ Duplication in the running executables

▪ Minor bug fixes of system libraries require each application to explicitly
relink

⬛ Modern solution: Shared Libraries
▪ Object files that contain code and data that are loaded and linked into

an application dynamically, at either load-time or run-time

▪ Also called: dynamic link libraries, DLLs, .so files

Carnegie Mellon

31

Shared Libraries (cont.)
⬛ Dynamic linking can occur when executable is first loaded and run (load-time linking).

▪ Common case for Linux, handled automatically by the dynamic linker (ld-linux.so).

▪ Standard C library (libc.so) usually dynamically linked.

⬛ Dynamic linking can also occur after program has begun
(run-time linking).

▪ In Linux, this is done by calls to the dlopen() interface.

▪ Distributing software.

▪ High-performance web servers.

▪ Runtime library interpositioning.

⬛ Shared library routines can be shared by multiple processes.

▪ More on this when we learn about virtual memory

Carnegie Mellon

32

Dynamic Linking at Load-time

Translators
(cpp, cc1, as)

main2.c

main2.o

libc.so
libvector.so

Linker (ld)

prog2l

Dynamic linker (ld-linux.so)

Relocation and symbol table info
Linker encodes what to expect at
load-time

libc.so
libvector.so

Code and data

Partially linked
executable object file

Relocatable
object file

Fully linked
executable
in memory

vector.h

Loader (execve)

unix> gcc -shared -o libvector.so \
 addvec.c multvec.c

Carnegie Mellon

33

Dynamic Linking at Run-time
#include <stdio.h>
#include <stdlib.h>
#include <dlfcn.h>

int x[2] = {1, 2};
int y[2] = {3, 4};
int z[2];

int main()
{
 void *handle;
 void (*addvec)(int *, int *, int *, int);
 char *error;

 /* Dynamically load the shared library that contains addvec() */
 handle = dlopen("./libvector.so", RTLD_LAZY);
 if (!handle) {
 fprintf(stderr, "%s\n", dlerror());
 exit(1);
 }

/* Get a pointer to the addvec() function we just loaded */
 addvec = dlsym(handle, "addvec");
 if ((error = dlerror()) != NULL) {
 fprintf(stderr, "%s\n", error);
 exit(1);
 }

 /* Now we can call addvec() just like any other function */
 addvec(x, y, z, 2);
 printf("z = [%d %d]\n", z[0], z[1]);

 /* Unload the shared library */
 if (dlclose(handle) < 0) {
 fprintf(stderr, "%s\n", dlerror());
 exit(1);
 }
 return 0;
}

dll.c

Carnegie Mellon

34

Linking Summary
⬛ Linking is a technique that allows programs to be

constructed from multiple object files.

⬛ Linking can happen at different times in a program’s
lifetime:

▪ Compile time (when a program is compiled)

▪ Load time (when a program is loaded into memory)

▪ Run time (while a program is executing)

⬛ Understanding linking can help you avoid nasty errors and
make you a better programmer.

Carnegie Mellon

35

Shell Lab Discussion / OH

