Carnegie Mellon

18-600: Recitation #3
Bomb Lab & GDB Overview

September 12th, 2017

Carnegie Mellon

Today

m X86-64 Overview
m Bomb Lab Introduction
m GDB Tutorial

x86-64 Integer Registers

%rax %eax %r8 %r8d

%rbx %ebx %r9 %r9d

%rcx %ecx %r10 %r10d
Y%rdx %edx %r11 %r11d
%rsi %esi %r12 %r12d
%rdi %edi %r13 %r13d
Y%rsp %esp %r14 %r14d
%rbp %ebp %r15 %r15d

® Can reference low-order 4 bytes (also low-order 1 & 2 bytes)

Bryant and O'Hallaron, Computer Systems: A Programmer’s Perspactive, Third Edition 3

Carnegie Mellon

x86-64: Register Conventions

=« Arguments passed in registers:
$rdi, %rsi, %Srdx, %rcx, %r8, %r9

« Return value: $rax

« Callee-saved: $rbx, %rl2, %rl3, %rl4,
Srbp, %Srsp

« Caller-saved: $rdi, %rsi, %rdx, %rcx,
$r8, %r9, %rax, %rl0, 3rll

« Stack pointer: $rsp

« Instruction pointer: $rip

Carnegie Mellon

x86-64: The Stack

« Grows downward towards lower memory addresses

« 3rsp points to top of stack
Bottom

Ox7TEfffffffffff —>

« push %reg: subtract 8 from $rsp, put
valin $reg at (%rsp)

« pop %regqg:putvalat ($rsp) In $req,
add 8to $rsp

SrSp —»

Top

Carnegie Mellon

p
x86-64: Stack Frames
= Every function call has its own Caller
stack frame. Frame) :
. rguments
« Think of a frame as a ; 24
workspace for each call. Frame pointer L [Return Addr
. $rbp Old $rbp
. Local variables (Optional)
. Callee & Caller-saved saved
registers Registers
+
. Optional arguments for a Local
function call Yatiabies
Argument
Stack pointer Build
$rsp—— |_(Optional)

x86-64: Function Call Setup

Caller:
= Allocates stack frame large enough for saved registers,

optional arguments (when no. of arguments > 6)
= Save any caller-saved registers in frame
« Save any optional arguments (in reverse order) in frame
« call foo:push $rip to stack, jump to label foo
Callee:
« Push any callee-saved registers (sometimes local
variables), decrease $rsp to make room for new frame

Carnegie Mellon

x86-64: Function Call Return

Callee:
« Increase $rsp, pop any callee-saved registers (in
reverse order), execute ret: pop %rip

Question?

Do all functions require a stack frame?

Bomb Lab/GDB Overview

Carnegie Mellon

What are the different programming errors ?

10

What are the different programming errors ?

B Compile time errors: Occur at the time of compilation
Syntax errors: Rules of the programming language are violated
int a, b:
Semantic errors: Program statements are not meaningful to the compiler
b+c = a;

1

What are the different programming errors ?

B Compile time errors: Occur at the time of compilation
* Syntax errors: Rules of the programming language are violated

* inta,b:
= Semantic errors: Program statements are not meaningful to the compiler
* bt+c=a
B Runtime errors: Occur during the execution of the program
* |llegal operations:
* Null pointer dereference
= lllegal memory reference

* Divide by zero
* Out of memory
= Opening non existent files

12

What are the different programming errors ?

B Compile time errors: Occur at the time of compilation
* Syntax errors: Rules of the programming language are violated

* inta,b:
= Semantic errors: Program statements are not meaningful to the compiler
* bt+c=a
B Runtime errors: Occur during the execution of the program
* |llegal operations:
* Null pointer dereference
= lllegal memory reference

* Divide by zero
* Out of memory
*= Opening non existent files
B Logical errors: Occur due to unexpected output
* Incorrect assumptions about behavior of
» programming language. Eg: implicit casting in c
» variables. Eg: volatile vs auto vs static variables
= functions: user defined, libraries. Eg: use of unsafe strcpy(), strcat() functions
*= Errors in arithmetic operations. Eg: overflow, truncation
= Not protecting critical sections (more on this in later lectures)
= Or merely incorrect logic

13

Carnegie Mellon

Debugging

“There’s one wolf in Alaska, how do you find it? “

14

What is Debugging ?

15

Carnegie Mellon

What is Debugging ?

m Identifying the problem

16

Carnegie Mellon

What is Debugging ?

m Identifying the problem
m Isolating the source of the problem

17

Carnegie Mellon

What is Debugging ?

m Identifying the problem
m Isolating the source of the problem
m Fixing the problem

18

Carnegie Mellon

What is Debugging ?

Debuggers help
m Identifying the problem _— herel

m Isolating the source of the problem
m Fixing the problem

19

Commonly used Debugging Methods

20

Commonly used Debugging Methods

m Using “printf” in different parts of the program

m Test programs each time more complexity is added

m Have checkers to ensure guarantees at entry and exit of each
function. You will do this in malloc lab

Test incrementally: Use simple to more complex tests

Use software tools
= gdb: Program debugger
= valgrind: Memory debugger
= objdump -d: Disassembles object file

21

Carnegie Mellon

What is a debugger ?

m Program that allows you to see what a program is doing while
it executes

m Program that also allows you to observe program state when
it crashed
m A good debugger must allow:
= Start and stop programs arbitrarily
= Controlled stepping through a program
= Enable examining code and data
= Maintain history of a program run and print useful information about it
= GDBis a great example of a good debugger!

22

Carnegie Mellon

GDB: Program debugger

m GNU debugger - GDB is the standard debugger for Unix like
operating systems

m Itis used to debug programs written in Ada, C, C++, Java,
Objective-C, Pascal

m GDB can help you in finding memory leakage related bugs but
not a tool to detect memory leakages

23

Carnegie Mellon

GDB Commands

Controlling Execution: step, next, break, run

Getting Info: print, info locals, up/down, list, backtrace

24

Getting started with
using GDB

1. Compiling the program: You have to
tell your compiler to compile your
code with symbolic debugging
information included. Here's how to
do it with gcc, with the -g switch:

gcc -g hello.c -o hello

2. Don’t use compiler optimizations (-O,

3. Run gdb on the executable
gdb hello
4. Type ‘help’ to see how to use gdb

jithin@ubuntu:~/Desktops vim hello.c

jithin@ubuntu:~/Desktop$ gcc -g hello.c -o hello

jithin@ubuntu:~/Desktops gdb hello

GNU gdb (Ubuntu/Linaro 7.4-2012.04-0ubuntu2.1) 7.4-2012.04

Copyright (C) 2012 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html=>
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu”.

For bug reporting instructions, please see:
<http://bugs.launchpad.net/gdb-1inaro/=>...

Reading symbols from /home/fjithin/Desktop/hello...done.

(gdb) help

List of classes of commands:

aliases -- Aliases of other commands

breakpoints -- Making program stop at certain points
data -- Examining data

files -- Specifying and examining files

internals -- Maintenance commands

obscure -- Obscure features

running -- Running the program

stack -- Examining the stack

status -- Status inquiries

support -- Support facilities

tracepoints -- Tracing of program execution without stopping the program
user-defined -- User-defined commands

"help" followed by a class name for a list of commands in that class.
"help all" for the list of all commands.
"help" followed by command name for full documentation.
"apropos word" to search for commands related to "word".
Command name abbreviations are allowed if unambiguous.
(gdb) run
Starting program: /[home/jithin/Desktop/hello

Carnegie Mellon

Example Program: The binary bomb !

The nefarious Dr. Evil has planted a slew of “binary bombs” on our 64-bit shark
machines.

A binary bomb is a program that consists of a sequence of phases. Each phase
expects you to type a particular string on stdin.

If you type the correct string, then the phase is defused and the bomb proceeds to
the next phase.

Otherwise, the bomb explodes by printing "BOOM!!!" and then terminating. The
bomb is defused when every phase has been defused.

Our mission is to defuse the bomb.

Remember that we do not have the source code of the bomb. But we do know
that each phase is a function with prefix ‘phase_’ and appended with the phase
number

Our simple bomb has six phases, we will diffuse one in this class :)

26

Phase 1

Oops!

-bash-4.15 ./bomb

Welcome to my fiendish little bomb. You have 6 phases with
which to blow yourself up. Have a nice day!

1

BOOM! ! !

The bomb has blown up.
Your instructor has been notified.

-bash-4.15 |}

27

GDB to the rescue!

B We know that the function is called phase_1 (see bomb.c). Let’s ‘break’ at that.

-bash-4.1% gdb bomb

GNU gdb (GDB) 7.6

Copyright (C) 2013 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"”

and "show warranty"” for details.

This GDB was configured as "x86_64-unknown-linux-gnu".

For bug reporting instructions, please see:
<http://www.gnu.orgfsoftware/gdb/bugs/=...

Reading symbols from Jafs/andrew.cmu.edufusr5/preetium/private/labs/bomblab/bomb397/bomb...done.
(gdb) break phase_1

Breakpoint 1 at 0x401380

(gdb) run

Starting program: fafs/andrew.cmu.edu/usr5/preetium/private/labs/bomblab/bomb397/bomb
Welcome to my fiendish little bomb. You have 6 phases with

which to blow yourself up. Have a nice day!

1

Breakpoint 1, 0x0000000000481380 in phase_1 ()
(gdb) il

Carnegie Mellon

GDB: Breakpoints

B Breakpoints are set for specific lines in the code
B Running programs always stop at a breakpoint and hand you control
B Breakpoints can be set in any of the following ways:
= break main - break at the beginning of main()
= break 50 - break at the 50th line in the executable
= break hello.c:50 - break at the 50th line in hello.c
You can list the current break points and enable/disable break points

Breakpoint 1, 0x0000000000401380 in phase_1 ()

(gdb) info b

Mum Type Disp Enb Address What

1 breakpoint keep v 0x0000000000401380 <phase_1>
breakpoint already hit 1 time

(gdb) disable 1

(gdb) info b

Mum Type Disp Enb Address What

1 breakpoint keep n 0x0000000000401380 <phase_ 1>
breakpoint already hit 1 time

(gdb) il

29

Carnegie Mellon

GDB: Layouts

B ‘layout’ command specifies which windows you see
* layout asm: Standard layout, assembly window on top, command window on the bottom
= layout src: Same as previous, but source code window on top (NOT AVAILABLE FOR THIS LAB)
* layout reg: Opens the register window on top of either source or assembly, whichever was opened last
= layout prev/next: Navigate between layouts
‘layout’ command is useful when you want to parallely observe your code

(gdb) break phase_1

Breakpoint 1 at ©x4013860

(gdb) run

Starting program: fafsfandrew.cmu.edufusr5/pre
Welcome to my fiendish little bomb. You have 6
hich to blow yourself up. Have a nice day!

i |

Breakpoint 1, 0x0000000000401380 in phase_ 1 ()
(gdb) layout asmfj

30

Result of ‘layout asm’

0x401380

<phase 1=
<phase_1+4>
<phase_1+9>
<phase_1+14>
<phase_1+16>
<phase_1+18=>
<phase_1+23>
<phase_1+27>
<phase_2=
<phase_2+1>
<phase_2+5>
<phase_2+8>
<phase_2+13>
<phase_2+17>
<phase_2+19>
<phase_2+24>
<phase_2+29>
<phase_2+31=>
<phase_2+34>
<phase_2+37>
<phase_2+39>
<phase_2+42>
<phase 2+44=>

mov
callg
test
je
callg
add
retq
push
sub
mov
callg
cmpl
je
callg
mov
jmp
movslg
lea
cltq
mov

SOx8,%rsp

50x4a5950,%esi

Ox401770 =strings_not_equal=>
%eax,%eax

Bx401397 <phase_1+23>
Ox401a44 <explode bomb:=
50x8,%rsp

%rbx

SOx20,%rsp

¥rsp,%rsi

Ox401a7a <read_six_numbers:
$0x1, (%rsp)

Ox4013b4 <phase 2+24>
Ox401a44 =<explode_bomb=
50x1,%ebx

Ox4013d5 <phase 2+57>
%ebx ,%rdx

-0x1(%rbx) ,%eax

(%rsp,%rax,4),%eax
%eax ,%eax
%eax, (%rsp,%rdx,4)

thild process 20359 In: phase 1
gdb) layout reg

Carnegie Mellon

31

Result of ‘layout reg’

—Register group: general
rax Ox6d9686 7181952 Ox403260 4207200 Ox1 1

rdx Ox1 1 i @x6d9680 7181952 Ox6d9680 7181952
rbp Oxe axe ax7fffffffele8 Ox7fffffffeles8 0x6dbB8O 7190656
re Ox0 0 Ox22 34 Ox246 582

riz 0x4031d6 4207056 Ox0 0] Ox0 0

ris Ox0 0 Bx401380 0x401380 <phase_1> Ox206 [PF IF]
cs 0x33 iak x2b 43 axe G|

es Ox0] 0x63 99 Ox0]

2o | 0x401380 <phase 1= sub SOX8,%rsp
0x401384 <phase_1+4> mov 50x4a5950,%esi
Bx401389 <phase_1+9> callg 6x401770 <strings_not_equal=
Ox40138e <phase_1+14> test feax,keax
0x401390 <phase_1+16> je 0x401397 <phase_1+23>
9x401392 <phase_1+18> callg 0x401a44 <explode_bomb=
Bx401397 <phase_1+23> add $Ox8,%rsp
9x40139b <phase_1+27> retq
0x40139c <phase_2> push %rbx
Bx40139d <phase 2+1> sub $0x20,%rsp
0x4013al1 <phase 2+5> mov %rsp,%rsi

child process 2946 In: ihase al Line: 27

32

Carnegie Mellon

Stepping around

B Stepping through source code
= gcc -g hello.c: Compiles with line number information (Can also step through assembly)
= step: Moves to the next line in the current program: steps ‘into’ function calls
* step n: Move n lines from the current position: ‘n’ includes lines from inside function calls
* next: Moves to the next line in the current program: steps ‘over’ function calls
= next n: Move n lines from the current position: ‘n” excludes lines having function calls
B Stepping through assembly code (RECOMMENDED)
* gcc hello.c: Compiles ‘without’ line number information (Cannot step through source code)
= stepi: Moves to the next assembly level instruction: steps ‘into’ function calls
= stepi n: Execute next n instructions: includes instructions from inside function calls
= nexti: Moves to the next assembly level instruction: steps ‘over’ function calls
* nexti n: Execute next n instructions: steps over ‘call’ instructions

33

Carnegie Mellon

Ox401380 <phase_ 1> sub SOx8,%rsp

Bx401384 <phase 1+4> mov 50x4a5950,%esi

Ox401389 <phase_1+9=> callg ©Ox401770 <strings_not_equal:=
Ox40138e <phase 1+14> test %eax ,heax

Ox401390 <phase 1+16> je 0x401397 <phase 1+23>
Bx481392 <phase 1+18> callg 06x481a44 <explode bomb>
Ox401397 <phase_1+23> add SOx8,%rsp

Ox40139b <phase_1+27> retq

0x40139c <phase_ 2> push %rbx

Ox40139d <phase 2+1> sub SOx20,%rsp

Ox4013al <phase 2+5> mov %rsp,%rsi

child process 22448 In: phase 1
(gdb) stepi

Ox00PO0O0ONO401384 in phase_ 1 ()
(gdb) stepi

Ox00PO00000O401389 in phase_ 1 ()
(gdb) nexti

Ox000000000040138e in phase_1 ()
(gdb) stepi

Ox00PO0O00NO401390 in phase 1 ()
(gdb) Hl

34

Carnegie Mellon

Continuing execution after break

m If you are tired of single stepping line after line, type ‘c’ to continue
running

m But wait! The bomb may explode! Clearly, we should avoid
entering explode_bomb()

m Insert a breakpoint at explode_bomb() and then type ‘c’

= Breakpoint hit: Wrong Input,
= Breakpoint miss: Correct Input
m We avoid exploding bomb even with the wrong input

35

Carnegie Mellon

0x401a44 <explode bomb=> SOX8,%rsp

. . . 0x401a48 <explode bomb+4> S0x4a5c8a,%edi

CQnt|nu|ng execution px401a4d <explode_bomb+9> @x405050 <puts>

. <explode _bomb+14= $0x4a5c93,%edi

after break) <explode_bomb+19> Bx405050 <puts>
) <explode_bomb+24> $0x0,%edi

L <explode_bomb+29=> 0x401928 <send_msg>

B So, wedid hit the 0x401a66 <explode bomb+34> $0x4a5b10,%edi

explode_bomb() break point! O@x401a6b <explode_bomb+39=> @x405050 <puts=>
B Ourinput ‘I’ was wrong :() <explode_bomb+44> $0x8,%edi

B Whatis the right input ? ' <explode_bomb+49> 0x403860 <exit>

child process 22448 In: explode bomb

Ox0000000000401389 in phase 1 ()
{(gdb) nexti

0x000000000040138e in phase_1 ()
(gdb) stepi

Ox0000000000401390 in phase 1 ()
{(gdb) break explode_bomb
Breakpoint 2 at 0x401a44

(gdb) c

Continuing.

Breakpoint 2, 0x0000000000401a44 in explode_bomb ()
CEDN |

Examining variables

Critical function: strings_not_equal()

Critical values: Arguments and return values of
strings_not_equal()

Examine the values of both these registers
Remember that our input was “1”

in phase_1 {}

in phase_1 ({}

"The moon wunit will

edi

nput_strin

in phase_1 ({}

wym

be

divided into two di

Carnegie Mellon

So, what should our input be ?

38

Carnegie Mellon

The moon unit will be divided into two divisions.

39

N asesrnein 1\/[nllon

B+ J|0x401380 <phase_1=> sub SOx8,%rsp
0x401384 <phase_1+4> mov 50x4a5950,%esi
= 0x401389 <phase_1+9> callg ©8x481770 <strings_not_equal=

e 0x48138e <phase_1+14> test %eax,%eax

IMe TO test.. . . ipestugu i e
Bx401392 <phase 1+18=> callg 0x481a44 <explode_bomb=
0x401397 <phase 1+23> add SOx8,%rsp
0x40139b <phase_1+27> retq
0x40139c <phase_ 2> push %rbx
0x40139d <phase_ 2+1> sub $0x20,%rsp
Bx4013al <phase_2+5> mov %rsp,%rsi
Bx4013a4 <phase_2+8> callg ©x48l1la7a <read_six_numbers=
0x4013a9 <phase 2+13> cmpl $0x1,(%rsp)
Ox4013ad <phase 2+17=> je 0x4013b4 <phase_2+24>
Bx4013af <phase_2+19> callg 0x401a44 <explode_bomb=>
0x4013b4 <phase_2+24> mov S0x1,%ebx
0x4013b9 <phase_2+29> jmp 0x4013d5 <phase_2+57>
0x4013bb <phase_2+31> movslqg %ebx,%rdx
0x4813be <phase_2+34> lea -0x1(%rbx) ,%eax
0x4013c1 <phase_2+37> cltq
Bx4013c3 <phase_2+39> mov (%rsp,%rax,4),%eax
0x4013c6 <phase_2+42> add %eax,%eax
©x4013cB <phase 2+44> cmp %eax, (%¥rsp,%rdx,4

phase 1

Px4a5950: "The moon unit will be divided into two divisions.”
(gdb) x/s Sedi

Ox6d9680 <input_strings>: "The moon unit will be divided into two divisions."
(gdb) nexti

Ox000000000040138e in phase_1 ()

Ox0000000000401390 in phase_1 ()
(gdb) stepi

px0000000000401397 in phase 1 ()
(gdb) i

Carnegie Mellon

Yay, bomb defused !

41

Carnegie Mellon

Examining and Modifying Variables

B print expression/variable: Print value of variable/expression
B watch expression/variable: Break each time the expression/variable is written
B setvariable expression: Eg: set variable x=20
B Examining registers
= print /d Srax: Print contents of %rax in decimal
= print /x Srax: Print contents of %rax in hex
= print /t Srax: Print contents of %rax in binary
= print *(int *) Oxbffff890: Print integer at address Oxbffff890
= print *(int *) (Srsp+8): Print integer at address %rsp + 8
= print (char *) Oxbfff890: Examine a string stored at Oxbffff890
= x/w Oxbffff890: Examine (4-byte) word starting at address Oxbffff890
= X/2w Srsp: Examine 2 (4-byte) word starting at address in Srsp
= X/s Srsp: Examine a string stored at the address stored in Srsp

42

Carnegie Mellon

Examining code

disas: Disassemble current function

disas sum: Disassemble function sum
disas 0x80483b7: Disassemble function
around 0x80483b7

disas 0x80483b7 0x80483c7: Disassemble
code within specified address range
backtrace: print the current stack

phas
in main optimized out=, argv=<optimized out=>) at bomb.c:

43

Inserting Watchpoints

Watchpoints are special breakpoints

They trigger when an expression changes

Useful for watching specific registers, especially

in loops. Avoids having to print out values each time

(gdb) info watchpoints
Num Type

3 watchpoint

4 watchpoint
CLN |

(gdb) ni
Watchpoint 4: Srdx

0ld value 5

New value = 2
Ox00000000004013be
(gdb) ni
Watchpoint 3: Srax

0ld value 2
New wvalue 1
OxX00000000004013c1

(gdb) B

Disp Enb Address
keep y
keep y

in phase_2 ()

in phase_ 2 ()

What
Srax
Srdx

Carnegie Mellon

More useful GDB constructs

B Examine contents in memory using expressions: print *(int *) (Srsp + 4*Srdx)
B Examine multiple words on stack: x/6w Srsp
B break at certain addresses (useful to examine only the interesting parts of the code): break *0xabcd

45

Carnegie Mellon

Resources

http://csapp.cs.cmu.edu/2e/docs/gdbnotes-x86-64.pdf
https://beej.us/guide/bggdb/
http://www.delorie.com/gnu/docs/gdb/gdb toc.html

How debuggers work:
https://blog.0x972.info/?d=2014/11/13/10/40/50-how-does-
a-debugger-work

46

http://csapp.cs.cmu.edu/2e/docs/gdbnotes-x86-64.pdf
https://beej.us/guide/bggdb/
http://www.delorie.com/gnu/docs/gdb/gdb_toc.html
https://blog.0x972.info/?d=2014/11/13/10/40/50-how-does-a-debugger-work
https://blog.0x972.info/?d=2014/11/13/10/40/50-how-does-a-debugger-work

