
Carnegie Mellon

1

18-600: Recitation #3
Bomb Lab & GDB Overview

September 12th, 2017

Carnegie Mellon

2

Today

⬛ X86-64 Overview
⬛ Bomb Lab Introduction
⬛ GDB Tutorial

Carnegie Mellon

3

Carnegie Mellon

4

x86-64: Register Conventions

■ Arguments passed in registers:
%rdi, %rsi, %rdx, %rcx, %r8, %r9

■ Return value: %rax
■ Callee-saved: %rbx, %r12, %r13, %r14,
%rbp, %rsp

■ Caller-saved: %rdi, %rsi, %rdx, %rcx,
%r8, %r9, %rax, %r10, %r11

■ Stack pointer: %rsp
■ Instruction pointer: %rip

Carnegie Mellon

5

x86-64: The Stack

■ Grows downward towards lower memory addresses
■ %rsp points to top of stack

■ push %reg: subtract 8 from %rsp, put
val in %reg at (%rsp)

■ pop %reg: put val at (%rsp) in %reg,
add 8 to %rsp

%rsp

Top

Bottom
0x7fffffffffff

Carnegie Mellon

6

x86-64: Stack Frames
■ Every function call has its own

stack frame.
■ Think of a frame as a

workspace for each call.
■ Local variables
■ Callee & Caller-saved

registers
■ Optional arguments for a

function call

Carnegie Mellon

7

x86-64: Function Call Setup

Caller:
■ Allocates stack frame large enough for saved registers,

optional arguments (when no. of arguments > 6)
■ Save any caller-saved registers in frame
■ Save any optional arguments (in reverse order) in frame
■ call foo: push %rip to stack, jump to label foo
Callee:
■ Push any callee-saved registers (sometimes local

variables), decrease %rsp to make room for new frame

Carnegie Mellon

8

x86-64: Function Call Return

Callee:
■ Increase %rsp, pop any callee-saved registers (in

reverse order), execute ret: pop %rip

Question?

Do all functions require a stack frame?

Carnegie Mellon

9

Bomb Lab/GDB Overview

Carnegie Mellon

10

What are the different programming errors ?

Carnegie Mellon

11

What are the different programming errors ?

⬛ Compile time errors: Occur at the time of compilation
▪ Syntax errors: Rules of the programming language are violated

▪ int a, b:
▪ Semantic errors: Program statements are not meaningful to the compiler

▪ b+c = a;

Carnegie Mellon

12

What are the different programming errors ?

⬛ Compile time errors: Occur at the time of compilation
▪ Syntax errors: Rules of the programming language are violated

▪ int a, b:
▪ Semantic errors: Program statements are not meaningful to the compiler

▪ b+c = a
⬛ Runtime errors: Occur during the execution of the program

▪ Illegal operations:
▪ Null pointer dereference
▪ Illegal memory reference
▪ Divide by zero
▪ Out of memory
▪ Opening non existent files

Carnegie Mellon

13

What are the different programming errors ?

⬛ Compile time errors: Occur at the time of compilation
▪ Syntax errors: Rules of the programming language are violated

▪ int a, b:
▪ Semantic errors: Program statements are not meaningful to the compiler

▪ b+c = a
⬛ Runtime errors: Occur during the execution of the program

▪ Illegal operations:
▪ Null pointer dereference
▪ Illegal memory reference
▪ Divide by zero
▪ Out of memory
▪ Opening non existent files

⬛ Logical errors: Occur due to unexpected output
▪ Incorrect assumptions about behavior of

▪ programming language. Eg: implicit casting in c
▪ variables. Eg: volatile vs auto vs static variables
▪ functions: user defined, libraries. Eg: use of unsafe strcpy(), strcat() functions

▪ Errors in arithmetic operations. Eg: overflow, truncation
▪ Not protecting critical sections (more on this in later lectures)
▪ Or merely incorrect logic

Carnegie Mellon

14

Debugging

“ There’s one wolf in Alaska, how do you find it? “

Carnegie Mellon

15

What is Debugging ?

Carnegie Mellon

16

What is Debugging ?

⬛ Identifying the problem

Carnegie Mellon

17

What is Debugging ?

⬛ Identifying the problem
⬛ Isolating the source of the problem

Carnegie Mellon

18

What is Debugging ?

⬛ Identifying the problem
⬛ Isolating the source of the problem
⬛ Fixing the problem

Carnegie Mellon

19

What is Debugging ?

⬛ Identifying the problem
⬛ Isolating the source of the problem
⬛ Fixing the problem

Debuggers help
here!

Carnegie Mellon

20

Commonly used Debugging Methods

Carnegie Mellon

21

Commonly used Debugging Methods

⬛ Using “printf” in different parts of the program
⬛ Test programs each time more complexity is added
⬛ Have checkers to ensure guarantees at entry and exit of each

function. You will do this in malloc lab
⬛ Test incrementally: Use simple to more complex tests
⬛ Use software tools

▪ gdb: Program debugger

▪ valgrind: Memory debugger

▪ objdump -d: Disassembles object file

Carnegie Mellon

22

What is a debugger ?

⬛ Program that allows you to see what a program is doing while
it executes

⬛ Program that also allows you to observe program state when
it crashed

⬛ A good debugger must allow:
▪ Start and stop programs arbitrarily

▪ Controlled stepping through a program

▪ Enable examining code and data

▪ Maintain history of a program run and print useful information about it

▪ GDB is a great example of a good debugger!

Carnegie Mellon

23

GDB: Program debugger

⬛ GNU debugger - GDB is the standard debugger for Unix like
operating systems

⬛ It is used to debug programs written in Ada, C, C++, Java,
Objective-C, Pascal

⬛ GDB can help you in finding memory leakage related bugs but
not a tool to detect memory leakages

Carnegie Mellon

24

GDB Commands

Controlling Execution: step, next, break, run

Getting Info: print, info locals, up/down, list, backtrace

Carnegie Mellon

25

Getting started with
using GDB

1. Compiling the program: You have to
tell your compiler to compile your
code with symbolic debugging
information included. Here's how to
do it with gcc, with the -g switch:

 gcc -g hello.c -o hello

2. Don’t use compiler optimizations (-O,
-O2…….)

3. Run gdb on the executable

 gdb hello

4. Type ‘help’ to see how to use gdb

Carnegie Mellon

26

Example Program: The binary bomb !
⬛ The nefarious Dr. Evil has planted a slew of “binary bombs” on our 64-bit shark

machines.
⬛ A binary bomb is a program that consists of a sequence of phases. Each phase

expects you to type a particular string on stdin.
⬛ If you type the correct string, then the phase is defused and the bomb proceeds to

the next phase.
⬛ Otherwise, the bomb explodes by printing "BOOM!!!" and then terminating. The

bomb is defused when every phase has been defused.
⬛ Our mission is to defuse the bomb.
⬛ Remember that we do not have the source code of the bomb. But we do know

that each phase is a function with prefix ‘phase_’ and appended with the phase
number

⬛ Our simple bomb has six phases, we will diffuse one in this class :)

Carnegie Mellon

27

Phase 1

Oops!

Carnegie Mellon

28

GDB to the rescue!
⬛ We know that the function is called phase_1 (see bomb.c). Let’s ‘break’ at that.

Carnegie Mellon

29

GDB: Breakpoints
⬛ Breakpoints are set for specific lines in the code
⬛ Running programs always stop at a breakpoint and hand you control
⬛ Breakpoints can be set in any of the following ways:

▪ break main - break at the beginning of main()
▪ break 50 - break at the 50th line in the executable
▪ break hello.c:50 - break at the 50th line in hello.c

⬛ You can list the current break points and enable/disable break points

Carnegie Mellon

30

GDB: Layouts
⬛ ‘layout’ command specifies which windows you see

▪ layout asm: Standard layout, assembly window on top, command window on the bottom
▪ layout src: Same as previous, but source code window on top (NOT AVAILABLE FOR THIS LAB)
▪ layout reg: Opens the register window on top of either source or assembly, whichever was opened last
▪ layout prev/next: Navigate between layouts

⬛ ‘layout’ command is useful when you want to parallely observe your code

Carnegie Mellon

31

Result of ‘layout asm’

Carnegie Mellon

32

Result of ‘layout reg’

Carnegie Mellon

33

Stepping around
⬛ Stepping through source code

▪ gcc -g hello.c: Compiles with line number information (Can also step through assembly)
▪ step: Moves to the next line in the current program: steps ‘into’ function calls
▪ step n: Move n lines from the current position: ‘n’ includes lines from inside function calls
▪ next: Moves to the next line in the current program: steps ‘over’ function calls
▪ next n: Move n lines from the current position: ‘n’ excludes lines having function calls

⬛ Stepping through assembly code (RECOMMENDED)
▪ gcc hello.c: Compiles ‘without’ line number information (Cannot step through source code)
▪ stepi: Moves to the next assembly level instruction: steps ‘into’ function calls
▪ stepi n: Execute next n instructions: includes instructions from inside function calls
▪ nexti: Moves to the next assembly level instruction: steps ‘over’ function calls
▪ nexti n: Execute next n instructions: steps over ‘call’ instructions

Carnegie Mellon

34

Carnegie Mellon

35

Continuing execution after break

⬛ If you are tired of single stepping line after line, type ‘c’ to continue
running

⬛ But wait! The bomb may explode! Clearly, we should avoid
entering explode_bomb()

⬛ Insert a breakpoint at explode_bomb() and then type ‘c’
▪ Breakpoint hit: Wrong Input,

▪ Breakpoint miss: Correct Input

⬛ We avoid exploding bomb even with the wrong input

Carnegie Mellon

36

Continuing execution
after break
⬛ So, we did hit the

explode_bomb() break point!
⬛ Our input ‘1’ was wrong :(
⬛ What is the right input ?

Carnegie Mellon

37

Examining variables

⬛ Critical function: strings_not_equal()
⬛ Critical values: Arguments and return values of

strings_not_equal()
⬛ Examine the values of both these registers
⬛ Remember that our input was “1”

Carnegie Mellon

38

So, what should our input be ?

Carnegie Mellon

39

The moon unit will be divided into two divisions.

Carnegie Mellon

40

Time to test….

Carnegie Mellon

41

Yay, bomb defused !

Carnegie Mellon

42

Examining and Modifying Variables
⬛ print expression/variable: Print value of variable/expression
⬛ watch expression/variable: Break each time the expression/variable is written
⬛ set variable expression: Eg: set variable x=20
⬛ Examining registers

▪ print /d $rax: Print contents of %rax in decimal
▪ print /x $rax: Print contents of %rax in hex
▪ print /t $rax: Print contents of %rax in binary
▪ print *(int *) 0xbffff890: Print integer at address 0xbffff890
▪ print *(int *) ($rsp+8): Print integer at address %rsp + 8
▪ print (char *) 0xbfff890: Examine a string stored at 0xbffff890
▪ x/w 0xbffff890: Examine (4-byte) word starting at address 0xbffff890
▪ x/2w $rsp: Examine 2 (4-byte) word starting at address in $rsp
▪ x/s $rsp: Examine a string stored at the address stored in $rsp

Carnegie Mellon

43

Examining code

⬛ disas: Disassemble current function
⬛ disas sum: Disassemble function sum
⬛ disas 0x80483b7: Disassemble function

around 0x80483b7
⬛ disas 0x80483b7 0x80483c7: Disassemble

code within specified address range
⬛ backtrace: print the current stack

Carnegie Mellon

44

Inserting Watchpoints

● Watchpoints are special breakpoints
● They trigger when an expression changes
● Useful for watching specific registers, especially

in loops. Avoids having to print out values each time

Carnegie Mellon

45

More useful GDB constructs
⬛ Examine contents in memory using expressions: print *(int *) ($rsp + 4*$rdx)
⬛ Examine multiple words on stack: x/6w $rsp
⬛ break at certain addresses (useful to examine only the interesting parts of the code): break *0xabcd

Carnegie Mellon

46

Resources

⬛ http://csapp.cs.cmu.edu/2e/docs/gdbnotes-x86-64.pdf
⬛ https://beej.us/guide/bggdb/
⬛ http://www.delorie.com/gnu/docs/gdb/gdb_toc.html
⬛ How debuggers work:

https://blog.0x972.info/?d=2014/11/13/10/40/50-how-does-
a-debugger-work

http://csapp.cs.cmu.edu/2e/docs/gdbnotes-x86-64.pdf
https://beej.us/guide/bggdb/
http://www.delorie.com/gnu/docs/gdb/gdb_toc.html
https://blog.0x972.info/?d=2014/11/13/10/40/50-how-does-a-debugger-work
https://blog.0x972.info/?d=2014/11/13/10/40/50-how-does-a-debugger-work

