
18-600 C Bootcamp
September 3rd, 2017

Today
● To help you get comfortable with C.
● Ask questions at any time!
● Code samples available at:

/afs/andrew.cmu.edu/usr5/akaginal/public/c_bootcamp.tar (compressed)
Use tar xvf c_bootcamp.tar to extract files from the tarball

Some basic facts about C
● C was invented to write an operating system called UNIX
● The UNIX OS was completely written in C
● Today C is the most widely used and popular System Programming

Language.
● Example use cases of C: Operating Systems, Compilers, Interpreters,

Databases, Assemblers, Text editors, Device Drivers
● C is a compiled language. The most frequently used and free available

compiler is the GNU C/C++ compiler. Eg: gcc foo.c

Basic C Program Structure
Hello World.c
#include <stdio.h>

int main(void) {
 /* my first program in C */
 int a = 18600;
 printf("Hello! Welcome to %d \n", a);

 return 0;
}

Notice the following components:
● Preprocessor commands
● Functions
● Variables
● Comments
● Statements
● Parameters, return values

Data Types in C
● Basic Types

○ Integer: char, int, long, double, float (both signed and unsigned)

● Void Types (generic type)
○ Indicate no value: Eg: void main(void) {....}

● User Defined Data Types / Data Structures
○ Arrays, Structures

● Special Data Types
○ Enum, Unions

Basic Data Types

Type Storage size (x86-64
compiler specific)

Range of values Precision

char 1 byte 0 - 255 (unsigned),
-128-127 (signed)

--NA--

int 4 bytes 0 to 4,294,967,295 (unsigned)
-2,147,483,648 to 2,147,483,647 (signed)

--NA--

long long 8 bytes 0 to 18,446,744,073,709,551,615 (unsigned)

−9,223,372,036,854,775,808 to 9,223,372,036,854,775,807 (signed)

--NA--

float 4 bytes 1.2E-38 to 3.4E+38 6 decimals

double 8 bytes 2.3E-308 to 1.7E+308 15 decimals

long double 10 bytes 3.4E-4932 to 1.1E+4932 19 decimals

Aggregate Data Types : Arrays/Strings
● Arrays: Fixed size sequential collection of data of the same type

○ Array declaration: type arrayName[size]. Eg: int array[10], char array[10]
○ Array definition: int array[5] = {0,1,2,3,4};
○ Accessing an array element: int secElem = array[1]
○ Multi-dimensional array: 2-dimensional arrays are most common

■ 2-dimensional array is a list of 1-dimensional arrays
■ Eg: int array[4][4], char array[3][2]

● Strings: Null terminated (‘\0’) terminated character array
○ Null-character tells us where the string ends
○ All standard C library functions on strings assume null-termination.

Aggregate Data Types: Struct
● Collection of values placed under one name in a single block of memory

○ Can put structs, arrays in other structs
○ Can have arrays of structures too

● Given a struct instance, access the fields using the ‘.’ operator
● Given a struct pointer, access the fields using the ‘->’ operator

struct bar_s biz; // bar_s instance
biz.ar[0] = ‘a’;
biz.baz.a = 1;
struct bar_s* boz = &biz; // bar_s ptr
boz->baz.b = ‘b’;

struct bar_s {
 char ar[10];
 struct foo_s baz;
}

struct foo_s {
 int a;
 char b;
}

Pointers in C
● A pointer is a variable which stores the address of a value in memory

Syntax: type *ptr
○ Eg: int *ptr, char *ptr, void *ptr

● Get the address of a value in memory with the ‘&’ operator
○ Eg: int a = 10; ptr = &a;

● Access the value by dereferencing using the * operator; can be used to
read value or write value to given address

○ Eg: int b = *ptr; *ptr = 3;
○ Dereferencing NULL causes a runtime error

■ Eg: int *ptr = NULL; *p = 0; // Runtime error !!!!

Pointer Arithmetic
● Can add/subtract from an address to get a new address

○ Only perform when absolutely necessary (i.e., malloc)
○ Result depends on the pointer type

● Pointer to type ‘a’ references a block of sizeof(a) bytes. Any arithmetic
operations therefore moves in steps of these block sizes

● Examples:
○ A+i, where A is a pointer = 0x100, i is an int (x86-64)

■ int* A: A+i = 0x100 + sizeof(int) * i = 0x100 + 4 * i
■ char* A: A+i = 0x100 + sizeof(char) * i = 0x100 + i
■ int** A: A + i = 0x100 + sizeof(int*) * i = 0x100 + 8 * i

● Rule of thumb: cast pointer explicitly to avoid confusion. More on this in
later slides

○ Prefer (char*)(A) + i vs A + i, even if char* A

Pointers: Let’s try some examples...
#include <stdio.h>

int main ()
{

 int var;
 int *ptr;
 int **pptr; // Pointer to a pointer
 // Array of pointers
 char *names[] = {"Tom", "Dick", "Harry"};

 var = 3000;

 /* take the address of var */
 ptr = &var;

 /* take the address of ptr using address of operator & */
 pptr = &ptr;

 printf("Value of var = %d\n", var);
 printf("Value available at *ptr = %d\n", *ptr);
 printf("Value available at pointer after increment = %d\n", ++*ptr);
 printf("Value available at **pptr = %d\n", **pptr);
 printf("First student is %s\n", names[0]);

 return 0;
}

Functions in C

#include <stdio.h>

/* function declaration */
void swap(int x, int y);

int main () {

 /* local variable definition */
 int a = 100;
 int b = 200;

 printf("Before swap, value of a : %d\n", a);
 printf("Before swap, value of b : %d\n", b);

 /* calling a function to swap the values */
 swap_by_val(a, b);

 printf("After swap, value of a : %d\n", a); // 100
 printf("After swap, value of b : %d\n", b); // 200

 swap_by_ref(&a, &b);

 printf("After swap, value of a : %d\n", a); // 200
 printf("After swap, value of b : %d\n", b); // 100

 return 0;
}

/* function definition to swap the values */
void swap_by_val(int x, int y) {

 int temp;

 temp = x; /* save the value of x */
 x = y; /* put y into x */
 y = temp; /* put temp into y */

 return;
}

/* function definition to swap the values */
void swap_by_ref(int *x, int *y) {

 int temp;
 temp = *x; /* save the value at address x */
 *x = *y; /* put y into x */
 y = temp; / put temp into y */

 return;
}

● Call-by-value: Changes made to arguments passed to a function aren’t reflected in the calling function
● Call-by-reference: Changes made to arguments passed to a function are reflected in the calling function

Function calls in C

#include <stdio.h>
// Definition of a function
int sum(int a, int b)
{
 return a+b;
}
void main() {

 int a = 3, b=4;

 printf(“%d”, sum(a, b));
}

#include <stdio.h>

// Declaration of a function
int sum(a, b);

main() {

 int a = 3, b=4;

 printf(“%d”, sum(a, b));
}

// Definition of a function
int sum(int a, int b)
{
 return a+b;
}

Ensure that the called function is defined (see func_call1.c) or at least declared
(see func_call2.c) before the calling function. Else, the compiler will complain about an
undefined reference to that function.

func_call1.c func_call2.c

Typedef in C
● The C programming language provides a keyword called typedef, which you can use to give a type, a new name.
● Typedefs are used to give a more meaningful/readable/shorter name to the data type used.
● Simple Example: typedef unsigned char BYTE; BYTE b1, b2;

struct list_node {
 int x;
};

/* You can typedef basic data types */
typedef int pixel;
typedef unsigned char BYTE;

/* You can typedef structures */
typedef struct list_node node;

/* You can typedef function prototypes */
typedef int (*cmp)(int e1, int e2);

pixel x; // int type
BYTE b1; // char type
node foo; // struct list_node type
cmp int_cmp; // int (*cmp)(int e1, int e2) type

Variable Scope and Qualifiers
● Every variable is associated with a scope and storage duration
● Scope determines where a variable can be accessed and storage duration

determines when a variable is created and destroyed
○ Global Variables are defined outside functions. Use ‘extern’ to use global variables in

other files
■ Scope: Across all files, Storage: Start and end of a program

○ Local variables are defined within functions
■ Scope: Within a function, Storage: Entry and exit of a function

● Variable qualifiers
○ Const Variables: For variables that won’t change
○ Static Variables:

■ Globals: usable/viewable only from within the current file: More on this next slide
■ Locals: For locals, keeps value between invocations

○ Volatile Variables: Variable values subject to change

Illustrating Variable Scope

#include <stdio.h>

int count ;
static int local_ref;
extern void write_extern();

// there can be only one main function among the compiled
// programs
main() {
 count = 5;
 local_ref = count;
 write_extern();
 local_fn(); // Compile time error
}

#include <stdio.h>

extern int count;

void write_extern(void) {
 printf("count is %d\n", count);
 printf("local_ref is %d\n", local_ref); // Compile time error
 }

static void local_fn(void) {
 printf(“Scope is restricted to this file\n”);
}

main.c support.c

gcc main.c support.c

Type Casting
● Type casting is a way to convert a variable from one data type to another data type.
● Typically used when dealing with operations between different data types
● When values of different data types are operated on each other, all variables are converted to a

type that is highest among them
● Integer Type Casting:

○ signed <-> unsigned: change interpretation of most significant bit
○ smaller signed -> larger signed: sign-extend (duplicate the sign bit)
○ smaller unsigned -> larger unsigned: zero-extend (duplicate 0)

● Cautions:
○ C implicitly typecasts, which can lead to errors. It is a good practice to explicitly typecast.
○ never cast to a smaller type; will truncate (lose) data
○ never cast a pointer to a larger type and dereference it, this accesses memory with

undefined contents

Void pointers
● void* type is C’s provision for generic types

○ Raw pointer to some memory location (unknown type)
○ Can’t dereference a void* (what is type void?)
○ Must cast void* to another type in order to dereference it

● Used by functions which work only with the pointer and not the contents
of the pointer. Eg: push() and pop() routines below

● Can cast back and forth between void* and other pointer types

C Program Memory Layout

Stack vs Heap vs Data
● Local variables and function arguments are placed on the stack

○ deallocated after the variable leaves scope
○ do not return a pointer to a stack-allocated variable!
○ do not reference the address of a variable outside its scope!

● Memory blocks allocated by calls to malloc/calloc are placed on the heap
● Globals, constants are placed in data section
● Example:

○ // a is a pointer on the stack to a memory block on the heap
○ int* a = malloc(sizeof(int));

Macros
● Fragment of code given a name; replace occurrence of name with

contents of macro
○ No function call overhead, type neutral

● Uses:
○ defining constants (INT_MAX, ARRAY_SIZE)
○ defining simple operations (MAX(a, b))
○ 122-style contracts (REQUIRES, ENSURES)

● Warnings:
○ Use parentheses around arguments/expressions, to avoid problems after substitution
○ Do not pass expressions with side effects as arguments to macros

#define INT_MAX 0x7FFFFFFFF
#define MAX(A, B) ((A) > (B) ? (A) : (B))
#define REQUIRES(COND) assert(COND)
#define WORD_SIZE 4
#define NEXT_WORD(a) ((char*)(a) + WORD_SIZE)

Header Files
● Includes C declarations and macro definitions to be shared across

multiple files. Like an ‘index’ of the functions implemented.
● Only include function prototypes/macros; no implementation code!
● Usage: #include <header.h>

○ #include <lib> for standard libraries (eg #include <string.h>)
○ #include “file” for your source files (eg #include “header.h”)

● Never include .c files (bad practice)

Header Guards
● Double-inclusion problem: include same header file twice

Error: child.h includes grandfather.h twice

● Solution: header guard ensures single inclusion

Okay: child.h only includes grandfather.h once

#inlcude “grandfather.h”

Preprocessing in C
● A C Preprocessor is just a text substitution tool and it instructs the compiler to do required

pre-processing before the actual compilation
● Handling of header files and macros is done during the preprocessing stage

#define MAX_ARRAY_LENGTH 20 // For standard values

#include <stdio.h> // include header files

#ifndef __HEADER__ // Used in header files to avoid duplication
#define __HEADER__
#endif

__FILE__, __LINE__, __func__ // Predefined macros

#define message_for(a, b) \ // When continuing macro definitions on multiple lines
 printf(#a " and " #b ": We love you!\n")

#define square(x) ((x) * (x)) // Parameterized macros: Simulate functions using macros

C - Command Line Arguments
● It is possible to pass some values from the command line to your C

programs when they are executed.
● These values are called command line arguments, they allow you to

control your program from outside instead of hard coding those values
inside the code.

#include <stdio.h>

int main(int argc, char *argv[]) {
 // argc: Number of command line arguments
 // argv: Array of pointers to each argument
 if(argc == 2) {
 printf("The argument supplied is %s\n", argv[1]);
 }
 else if(argc > 2) {
 printf("Too many arguments supplied.\n");
 }
 else {
 printf("One argument expected.\n");
 }
}

C Memory Management
● Memory can be statically allocated or dynamically allocated
● Memory is said to be statically allocated when it is reserved at the time of

compilation
● Memory is said to be dynamically allocated when it is reserved at the time

of program execution. Eg: Using c library functions such as malloc(),
calloc(), realloc()

● Statically allocated memory is freed automatically at the end of a function
call or program execution depending on the scope of the variable

● Dynamically allocated memory has to be freed explicitly using the free()
system call

● IMPORTANT
○ Number mallocs = Number frees
○ Never free a malloced block twice
○ Free only what you malloc and malloc only what you free

Why We Need Malloc
● Something that students new to the language often get confused about
● i.e. What is wrong with the following program?

● What is the size of mystr?

/* Very bad program! Will compile and run though! */
int main(int argc, char *argv[]) {
 int N;

if (argc >= 2) {
N = atoi(argv[1]);
char mystr[N];
myfunc(mystr);

}
return 0;

}

Ans: Undefined
● Malloc allows us to obtain memory during program execution

char *mystr = malloc(N*sizeof(char));

System calls and error conditions
● A System Call is a mechanism in which the user application requests the

service of the kernel (why do we need to do this?)
● May be called directly or indirectly through C library functions (e.g. fopen()

calls open())
● System calls may not always succeed. It is therefore important to check

the status of the return values from these calls before proceeding
● List of commonly used system calls include: open(), read()/write(), pipe(),

fork(), exec(), time(), waitpid()
● A system call sets the global variable errno with the error code, which

can be printed using strerror(). The various error codes are defined in
errno.h

Image src: 15-410, Lecture slides

// Program showing how to read error codes
#include <stdio.h>
#include <errno.h>
#include <string.h>

extern int errno ;

int main () {

 FILE * pf;
 int errnum;
 pf = fopen ("unexist.txt", "rb");

 if (pf == NULL) {

 errnum = errno;
 fprintf(stderr, "Value of errno: %d\n", errno);
 perror("Error printed by perror");
 fprintf(stderr, "Error opening file: %s\n", strerror(errnum));
 }
 else {

 fclose (pf);
 }

 return 0;
}

// Program demonstrating how to return exit status
#include <stdio.h>
#include <stdlib.h>

main() {

 int dividend = 20;
 int divisor = 5;
 int quotient;

 if(divisor == 0) {
 fprintf(stderr, "Division by zero!
Exiting...\n");
 exit(EXIT_FAILURE);
 }

 quotient = dividend / divisor;
 fprintf(stderr, "Value of quotient : %d\n",
quotient);

 exit(EXIT_SUCCESS);
}

C Standard Library
● Many basic housekeeping functions are available to a C program in form of

standard library functions.
● To call these, a program must #include the appropriate .h file.
● You can use ‘man’ commands on these functions to learn about their usage.
● Most commonly used header files:

○ stdio.h:
■ File I/O: fopen(), fclose(), fscanf(), fprintf()
■ Command line argument parsing: getopt()

● string.h string operations
○ char * strcpy(char *dst, char *src)
○ char * strcat(char *dst, char *src)
○ size_t strlen(char *str)
○ int strcmp(char *str1, char *str2)

● stdlib.h
○ Dynamic memory allocation functions: malloc(), calloc(), free()
○ exit(int status): terminate program and return exit status to the parent

Compilation

GCC, Make Files
Source: See http://www.andrew.cmu.edu/course/15-123-kesden/index/lecture_index.html

http://www.andrew.cmu.edu/course/15-123-kesden/index/lecture_index.html

GCC
● Used to compile C/C++ projects
● List the files that will be compiled to form an executable
● Specify options via flags
● Important Flags:

○ -g: produce debug information (important; used by GDB/valgrind)
○ -Werror: treat all warnings as errors (this is our default)
○ -Wall/-Wextra: enable all construction warnings
○ -pedantic: indicate all mandatory diagnostics listed in C-standard
○ -O0/-O1/-O2: optimization levels
○ -o <filename>: name output binary file ‘filename’

● Example:
○ gcc -g -Werror -Wall -Wextra -pedantic foo.c bar.c -o baz

Makefile
● Command-line compilation becomes

inefficient when compiling many files
together

● Solution: use make-files
● Single operation - ‘make’ to compile files

together
● Only recompiles updated files

Makefile for the malloc lab driver
#
CC = gcc
CFLAGS = -Wall -Wextra -Werror -O2 -g -std=gnu99

OBJS = mdriver.o memlib.o

all: mdriver

mdriver: $(OBJS)
$(CC) $(CFLAGS) -o mdriver $(OBJS)

mdriver.o: mdriver.c memlib.h
$(CC) $(CFLAGS) mdriver.c

memlib.o: memlib.c memlib.h
$(CC) $(CFLAGS) memlib.c

clean:
rm -f *~ *.o mdriver

Makefile Rules
● Comments start with a ‘#’, Commands start with a TAB.
● Common Make File Format:
● target: source(s)

TAB: command
TAB: command

● Macros: similar to C-macros, find and replace:
● CC = gcc

CCOPT = -g -DDEBUG -DPRINT
foo.o: foo.c foo.h
 $(CC) $(CCOPT) -c foo.c

Questions?

Appendix

Declaration vs Definition in C
● There can be multiple declarations of an external function or variable

● But there can be only one definition of a function or a variable. I.e. function names/variable names cannot be duplicated

#include <stdio.h>

// Unique definition of count
int count ;
// Multiple declarations of write_extern()
extern void write_extern();

// there can be only one main function among the compiled
// programs
main() {
 count = 5;
 write_extern();
}

#include <stdio.h>

// Multiple declaration of count
extern int count;

void write_extern(void) {
 printf("count is %d\n", count);
}

main.c support.c

#include <stdio.h>

Multiple declarations
extern int count;
extern void write_extern();

// ERROR: Duplicate definitions of write_extern!!!!
void write_extern(int a) {
 printf(“input var is %d\n”, a);
}

foo.c

gcc main.c support.c foo.c

Recursive Function calls
● Every function call creates a new stack for the called function
● Always remember to have a base case at which the function call returns
● Avoid recursion when you know that the input parameter can be large

void recursive_fn(n)
{

recursive_fn(n-1);
}

….
..

n

n-1

n-2

Segmentati
on fault

void recursive_fn(n)
{

If (n==1)
 return;
recursive_fn(n-1);

}

n

n-1

n-2

1…...

