UrbanSense

Team 20

Aatish Nayak @ Chris Wei Bl Riya Savla B Ridhi Surana
May 14, 2017



Abstract

The proliferation of Al powered traffic lights, internet connected streetlamps, solar powered
roads, smart flood watch systems, among others, signals the movement towards smarter cities.
As the first city with driverless cars and an endless pool of the world’s best engineering talent,

Pittsburgh is perfectly positioned to flourish in the 21st century. However, with aging road
infrastructure and regulatory oversight, it’s becoming even more important for municipalities
to embrace smart decision making. Local governments are more and more starting to rely on

data to drive their investment decisions in infrastructure, public transit, and real estate.

UrbanSense takes advantage of the reach and regularity of public transportation to gather

valuable metrics about a city. UrbanSense presents data about roads, air, and transit systems to
city officials to assist them in making better decisions about the cities we live in everyday.



Table of Contents

Project Description

Design Requirements

Architecture

Design Trade Studies

System Description/Depiction

Project Management

Evaluation

Lessons Learned

What would you do differently if you could start from scratch?

Future Work

Related Work (Competition)

References



Project Description

UrbanSense is an urban sensing platform that aims to take advantage of the reach and
regularity of public transportation, like the Port Authority bus system in Pittsburgh, to collect
data to extract meaningful metrics. Specifically, in our prototype, we plan to include pothole
detection and noise-level monitoring. Our goal is to design a modular system that can
seamlessly integrate additional sensors for new metrics. We will consolidate all of these sensors
into a set of compact devices that can be attached to any vehicle.

Design Requirements

Requirements: UrbanSense needs to be a cost-effective solution that can scale vertically to
large numbers. To achieve this, or solution needs to be highly energy efficient where possible
and be able to grow without high cost of entry. Additionally, our solution must also handle a
massive amount of data transfer and storage. Lastly, we need UrbanSense to scale horizontally,
making the cost of adding on additional sensors minimal.

Cost-effective: The driving idea behind UrbanSense is that the more data the city has, the more
actionable conclusions the city will be able to draw. As an example, if multiple buses report a
pothole at a particular location then the city can be more and more certain that a pothole is
indeed there and can be serviced if need be. To achieve this, we have designed a system uses
inexpensive microprocessors and sensors to create a sophisticated system capable of collecting
useful data. We also need to consider power sources that can be easily sustained and layout
designs that minimizes the amount of service these microprocessors need. Nearly everything
that can be automated should be automated, since human interaction greatly increases the
cost of operation.

Diversification: To scale horizontally, we need to design our system to handle an arbitrary
number of additional sensors (obviously limited by our choice of microprocessor). More
specifically, we need to design our overall system to not discriminate between different types
of data and make data from, for example, a pothole sensor and a pollution sensor treated
exactly the same by the system. The point at which data gains meaning is when it is in the
server and a job consumes the data to produce results. To achieve this, data is stored as generic
rows of data that contain the location, the time, the type of sensor, and the measurement as



well as some other metadata that might become relevant. The microprocessor simply tags
different data with different tags and those tags ascertain meaning when they are processed by
some online job.

Architecture

Central Data Collection:

We choose a Atmega328P to interface with our sensors as it has dedicated hardware support
for various communication protocols and an inbuilt analog-to-digital convertor. The
Atmega328P has four dedicated ADC pins and one SPI channel for interfacing with peripherals.
We chose to use an external 8-way multiplexer (the number is arbitrary) to be able to support a
higher number of analog sensors than what the Atmega328P inherently allows.

The microcontroller software is structured to allow easy customization. The user instantiates a
processor’ that takes care of setting up the required Atmega environment to enable SPI, 12C,
ADCs etc. The user can register a maximum of eight analog devices and provide an ADC value to
meaningful value convertor function (eg. IR sensor ADC values to distance in metric units). The
user can also register one SPI device along with a start-up function and a read function specific
to that device. Once the processor boots, it starts polling the sensors with a user-configurable
frequency and stores collected values in memory until the central data collection unit asks for a
set of values.

We used a Raspberry Pi as a central data collection unit. The Pi polls the Atmega at a
predetermined frequency for a set of all sensor values that are attached to the Atmega. It
doesn’t care about what the sensor values mean, simply identifying each sensor type with a
sensor ID and each individual sensor value with a tag ID. The Pi talks to the Atmega using I12C,
with the Pi acting as master and the Atmega as slave. This allows the Pi to communicate with a
number of other MCUs (limited by the size of the 12C address), thus allowing the system to
scale horizontally to include a large number of sensors.

Once the sensor data packets are received by the Pij, if it has internet connectivity (wifi), it will
send the data to the preconfigured server URL. It also caches the data locally in Redis for
redundant storage in the case that an internet connection cannot be established.

Pothole Detection - This subcomponent contains the IR sensor and accelerometer for pothole
detection. Although the name suggests that this subsystem determines the presence of



potholes, it only records raw sensor data and pushes it to the central data collection system.
The actual detection of potholes will be determined on the cloud server discussed below.
Another caveat is since this system will be connected to the central broadcast system via a
some hardware interface, the central system will poll the IR sensor and accelerometer as
opposed to the sensors broadcasting data.

GPS - This subcomponent contains the GPS module and Real Time Clock. The central data
collection function will poll this component whenever it needs the current location and
timestamp.

Feature Collection and Storage - This subsystem harbors the server and time series database
that stores the data received from the Pi. Since at this point the data is still generic, the server
also fetches the sensor id and tag id configuration for each data point before storing in the
server. This ensures it does not need to know which sensor the data came from or what the
data represents. Simply that the sensor id and tag id have entries in the configuration lookup
table.

Feature Extraction and Visualization - This is the most interesting system in that it actually
does processing and visualization of the sensor data to gather meaningful insights. Independant
jobs written for each type of sensor (accelerometer, ir, and sound in our case) do a series of
anomaly detections using an exponential moving average. Each anomaly is flagged and saved in
a separate DB. Then the client server extracts data from this DB and visualizes it on a map and
time series graphs. Looking forward, the correct authorities such as city and transportation
planning officials can analyze the maps and graphs to determine the conditions of roads and
noise pollution throughout the city.



Design Trade Studies

Data Abstraction Model

Atmega3i28p

Atmega3d2ip AtmegadlBp | 1) Knows how to poll all the sensors

2) Knows how to post-process raw data (such as ADCs)
3) Knows how to tag sensor data

(value, sensord, taghd]

Rasphberry Pi

Fi Pi 1) Knows about devices and their addresses
2) Access to GPS data

31 Knows details about server communication

(timie, lat, Ing, value, sensorld, tagld)

Flask Server
Server 1) Knews RPI device 1Ds
2) Knows mappings of sensorlD and taglD

TEEPONses Influx DB quersas

Client
Client 1) Knows semantics of sensorl [ and taglD
2) Knows how to interpret, parse, and analyze raw data

Two chip design - We added a Raspberry Pi to our design for a couple of reasons. First, we
needed a processor to handle threading, which would allow us to make progress even when an
instruction blocks (such as checking for internet connection by pinging google.com, sending a
POST request, waiting for a sensor to produce a value). Secondly, we also needed the hardware
to enable WiFi and Bluetooth (which we later decided was not necessary) - the Pi already had
all this hardware and had many nice properties that would be hard to implement by ourselves,
including caching previously used WiFi connections so that the Pi can connect automatically
when a remembered network is available. We could have directly used the Pi’s GPIO pins to poll
sensors directly, but we decided on using a Atmega328p MCU to poll sensors directly, which
would allow for multiple MCUs to be distributed across the bus, and a single Pi to poll all of
them, as seen in the Data Abstraction Model diagram.



PCB Design - We wanted our overall product to be compact so our PCB was designed to be a
shield that would sit on top of the Pi, taking up as little room as possible. This constraint forces
our PCB to be a certain dimension in order to fit on top of a Pi, and thus we are physically
constrained when deciding how many headers to put on our board. Primarily, we wanted to
support 8 ADC devices on our MCU which exceeds the total number of ADC ports our MCU had.
We placed an onboard multiplexer in order to support all 8 channels - we could have used all 16
channels of the multiplexer, but due to limited space, we settled with 8. In addition to the
ADCs, we left room for the GPS chip, which is connected directly to the Pi, as well as an
accelerometer chip. Power to the whole board is supplied by the Pi’s 5V output.

GPS - We decided to use a breakout board GPS from Adafruit since we did not want to
introduce unnecessary complexity to our board. Instead, we simply added several pins that
allowed the GPS to be swapped in and out. Most (possibly all) GPS chips communicate serially
through UART and through a protocol called NMEA, which sends data as a comma separated
strings and requires a lot of cycles string parsing. The GPS can be polled for new positions at a
set frequency which blocks whatever device polling the GPS blocks when no new positional
data is available, thus prevents progress on the other sensors. Due to the need for fast string
parsing and the need for threads to allow for progress, we opted to move the GPS module to be
connected directly to the Raspberry Pi’'s UART pins, which gives it a more heavy-weight
environment that can parse strings faster and allow for threading.

Protocol Selection - To show the flexibility of the system, we opted to use several different
types of sensors that measure different metrics and communicate using different protocols. To
start with, we had four protocols to poll data from the MCU - SPI, UART, I12C, and ADC. We
chose to use 12C to communicate between the MCU and the Pi since UART on the Pi was being
used to poll the GPS - this also freed up the UART channel on the MCU which allowed us to use
that channel for debugging. Unfortunately, no existing code to set the Raspberry Pi as a 12C
slave existed (and we did not have the resources to implement 12C slave code for the Pi) so we
chose to use the MCU as a slave which introduced a couple of issues. First, the MCU could no
longer poll any other 12C sensors since it must be registered as an 12C slave; possibly, the Pi
could directly poll the other sensors, but this would break our interface since it would require
the Pi to know specific details about specific sensors. Secondly, the MCU must wait for the Pi to
poll it in order to send any data, thus the MCU must coordinate with the Pi to poll data only
when the MCU is ready with a new batch of data. However, since the Pi acts as the master, this
allows for it to communicate to multiple MCUs which might be something we would want in
the future.



Sensor Protocol Selection - Since 12C was used to mediate communication between the MCU
and the Raspberry Pi, we are left with three protocols to poll data - SPI, UART, and ADC. We
knew that we wanted to use an accelerometer, and virtually all accelerometers on the market
use SPI or 12C. This required us to use the only SPI port on the MCU to poll the accelerometer.
The remaining sensors were all chosen to use ADC due to the design of the PCB.

Voltage issues - One design choice that plagued us throughout development was the choice of
using 5V as opposed to 3.3V as our power source. The Raspberry Pi had both voltages available,
and choosing 5V over 3.3V means that all of the MCU GPIO outputs would be 5V. Virtually all
accelerometer candidates operated safely in the 3.3V range but not at 5V - this required us to
use stick a logic level shifter into the PCB design which would take up a lot of room. On the flip
side, when running at 3.3V our IR sensors no longer operated, and at this point of the project,
we had already made a hefty $90 investment in the chosen IR sensors. This forced us to stay
with 5V supply, and to move the accelerometer off the chip and onto a breadboard. Further
down the road, the issue with supporting both 3.3V and 5V sensors could be solved by having
two MCUs, one powered with 3.3V and the other with 5V, and have both be polled by the Pi
through 12C.

Local Redundant Caching - As mentioned previously, if the Pi cannot establish a network
connection to offload the data, it stores it locally in Redis. Redis was chosen as a caching agent
because it has different configurable levels of on disk persistence. With This ensures that the Pi
does not run out of RAM in the case that it collects data for over an hour. Additionally, since
Redis has a key value storage design, it allows us to store schemaless data. We considered
other options including MongoDB however, we chose Redis since it has a low memory footprint
and one of our team members had extensive experience working with it.

Data Collection Server Design - The server communicates with the Pi by exposing a HTTP
endpoint that a Pi can POST data. We decided to use Flask for the server over alternatives like
Django and Node.js. Flask is generally used for APIs containing little to no html templates, and
since it’s implemented in Python, has extensive support for the plethora of useful python
libraries. Since we did not need templating and an extensive ORM like Django provides, Flask
did the job. Additionally, we needed a write optimized database to store time and geostamped
data while also allowing for efficient time based aggregating queries. After looking for a
database that supported our needs, we discovered InfluxDB, an open source time series
database best suited for loT device monitoring allowing millions of writes per second. Most
importantly, it uses a SQL-like query language with support for mean, standard deviation,
selecting my date range with nanosecond precision, the applications of which will be described
in the Data Processing and Visualization section.



Data Processing and Visualization - Once the server writes data to InfluxDB, the anomaly
extraction process begins. We wanted to make the processing jobs asynchronous and scalable
to many different type of sensor values. In other words, whenever new data is avaliable the job
should start processing it. We decided to use Celery, an asynchronous task queue based on
distributed message passing. Additionally, Flask has a plugin for celery allowing scheduling to
independant jobs for each sensor value type to run periodically. For the actual anomaly
detection, we decided to use a derivative detector algorithm, similar to various algorithms used
for edge detection in computer vision, because it highlights abrupt changes in value. Since the
algorithm involves finding a moving exponential average, | experimented with test data to
determine the best smoothing factor for each type of sensor value. In the end, the ideal
smoothing factors for each sensor were 0.2, 0.3, and 0.6, for IR, sound, and accelerometer data,
respectively. After flagging each data value as an anomaly or not, the refined post processed
data was written to PostgresQL. From there, the user could visualize the data on a real city map
overlaid with a heatmap as well as a time series graph. For rendering the map, we decided to
use Leaflet + Mapbox over Google Maps. Leaflet supports adding multiple layers on top of the
map as well as rendering thousands of map markers and polygon elements for visualizing a path
simultaneously. For the graph component, we decided to use Chronograf, the recommended
visualizer for InfluxDB data. It exposes a customizable dashboard to write custom Influx queries
to generate graphs. Through the use of these two tools, city officials could get meaningful
insights from the sensor data.



System Description/Depiction

Server . CeleryJob1 . Client

" . Celery Job 2
Flask Server - influxDB

- Postgres

WIFI

Pi Visualization

GPS UART .l receiver - redis

12C

Accel spi — Atmega328PP

ADC

Sound IR IR IR IR IR IR

Project Management

Week # | Deliverables

1 e System Demo #1
All parts in hand, set up required RPi environment.
Set up SPI communication with Accelerometer

2 e |Initial server architecture was in progress.
Tested IR sensors and map ADC values to distance measurements

3 e System Demo #2
e Decided on a protocol for sensor data communication between the Atmega
and the Pi.




Test and debug Atmega <-> Pi communication via UART.
Worked on the Pi data caching system.

Worked on getting the Pi to poll the GPS to geostamp and timestamp the
data collected

Made Pi offload data to server

Initial test run to get an idea of what real data looked like

System Demo #3
Visualization for sensor data in place
Switched to 12C communication between Atmega and the Pi

System Demo #4
Design final PCB version so that it sits right on top of the Pi as a backpack
Tested and calibrated Sound sensor

System Demo #5
Restructured the Atmega software to be make it more modular
Worked on physical casing to create an self-contained product.

System Demo #6

Tested the entire system together and collected real data by attaching the
rig to a car

Worked on Demo.

Team Member Responsibilities -

Person Primary Responsibilities Secondary Responsibilities

Aatish Cloud server and accompanying RPi data caching
infrastructure set up

Chris RPi data collection and GPS software | PCB design

Riya MCU <-> RPi communication Packaging

Ridhi MCU <-> Sensors interfacing Sensor calibration




Budget

Part Name / Unit Total
Description Link to Part Website Qt. | Price Price

Raspberry Pi https://www.adafruit.com/products/3055 2 $40 $80
https://www.amazon.com/Samsung-Class-Adapter-MB-MP

32 GB SD Card 32DA-AM/dp/B00IVPU786/ 2| $10.99( $21.98

$0.00

Coin Cell for GPS https://www.amazon.com/Maxell-CR1220-Lithium-Batterie

RTC (5-pack) s-5-Pack/dp/B0014WUYWC ?th=1 1 $4.20| $4.20

USB <-> TTL Cable |https://www.adafruit.com/products/954 1 $9.95( $9.95

IR Sensor Long

range https://www.sparkfun.com/products/8958 3| $14.95| $44.85

Accelerometer https://www.sparkfun.com/products/11446 1 $14.95| $14.95
https://www.amazon.com/Samsung-Class-Adapter-MB-MP

32 GB SD Card 32DA-AM/dp/B00IVPU786/ 1 $11.95| $11.95

F/F Jumper Wires |https://www.sparkfun.com/products/12796 2 $1.95| $3.90

JST Connector Wire | https://lwww.sparkfun.com/products/8733 3 $1.50| $4.50

Break Away

Headers https://www.sparkfun.com/products/116 2 $1.50| $3.00

Logic Level Shifter |https://www.sparkfun.com/products/12009 1 $2.95| $2.95

16 Channel

Multiplexer https://www.sparkfun.com/products/299 1 $0.95( $0.95
https://www.amazon.com/dp/B00114LOMM?ref=emc_b_5

Velcro Tape i&th=1 1] $28.35| $28.35

RPi Case with Heat |https://www.amazon.com/Smraza-Raspberry-Supply-Heat

Sinks sinks-Switch/dp/B01110OESI6 1 $12.99| $12.99
https://www.amazon.com/TR-Industrial-TR88302-Multi-Pur
pose-Cable/dp/B01018DC96/ref=sr_1_2?ie=UTF8&qid=149

Zip Ties 2109237&sr=8-2&keywords=zip+ties 1 $5.99| $5.99

Sound Detector https://www.sparkfun.com/products/12642 1 $10.95| $10.95

Gas Sensor

Breakout https://www.adafruit.com/product/3199 1 $14.95| $14.95



https://www.sparkfun.com/products/12796
https://www.adafruit.com/products/3055
https://www.amazon.com/dp/B00114LOMM?ref=emc_b_5_i&th=1
https://www.amazon.com/Samsung-Class-Adapter-MB-MP32DA-AM/dp/B00IVPU786/
https://www.amazon.com/Samsung-Class-Adapter-MB-MP32DA-AM/dp/B00IVPU786/
https://www.amazon.com/Maxell-CR1220-Lithium-Batteries-5-Pack/dp/B0014WUYWC?th=1
https://www.amazon.com/Smraza-Raspberry-Supply-Heatsinks-Switch/dp/B01I1OESI6
https://www.amazon.com/TR-Industrial-TR88302-Multi-Purpose-Cable/dp/B01018DC96/ref=sr_1_2?ie=UTF8&qid=1492109237&sr=8-2&keywords=zip+ties
https://www.amazon.com/Maxell-CR1220-Lithium-Batteries-5-Pack/dp/B0014WUYWC?th=1
https://www.adafruit.com/products/954
https://www.amazon.com/Samsung-Class-Adapter-MB-MP32DA-AM/dp/B00IVPU786/
https://www.amazon.com/TR-Industrial-TR88302-Multi-Purpose-Cable/dp/B01018DC96/ref=sr_1_2?ie=UTF8&qid=1492109237&sr=8-2&keywords=zip+ties
https://www.sparkfun.com/products/12642
https://www.sparkfun.com/products/11446
https://www.sparkfun.com/products/8733
https://www.amazon.com/TR-Industrial-TR88302-Multi-Purpose-Cable/dp/B01018DC96/ref=sr_1_2?ie=UTF8&qid=1492109237&sr=8-2&keywords=zip+ties
https://www.sparkfun.com/products/299
https://www.adafruit.com/product/3199
https://www.amazon.com/Samsung-Class-Adapter-MB-MP32DA-AM/dp/B00IVPU786/
https://www.amazon.com/Smraza-Raspberry-Supply-Heatsinks-Switch/dp/B01I1OESI6
https://www.sparkfun.com/products/116
https://www.sparkfun.com/products/12009
https://www.sparkfun.com/products/8958
https://www.amazon.com/dp/B00114LOMM?ref=emc_b_5_i&th=1

Risk Management

becomes unscalable.

Risk Type Risk Mitigation Strategy
Technical BLE bandwidth cannot handle the Remove Beacon as the middleman,
amount of data we upload to the attach 4G or Wifi chip onto on-bus
beacons device and broadcast data straight to
server
Schedule/ | Setting up server/sensors proves to In addition to removing the beacon
Technical be more challenging than expected (same as above), we will prioritize our
sensor implementations and stick two
one or two core features (e.g. pothole
and noise level monitoring)
Technical RPi and sensors consume too much Use voltage regulator and vehicle’s
power from onboard battery battery to power
Technical Due to lack of proper set up, battery | Buying extra sensors so progress is not
fries sensors halted
Budget The per unit cost of a sensor system Change launch plan to only deploy

system to 1-2 busses per route

Evaluation

e Power - We used a portable battery to power our system via the RPi. However, in the

future versions we would need a longer-lasting power source as explained in the

conclusions sections below.
e Range - To be able to detect unusual depths on the road, we looked at long range IR
sensors and LIDAR. While LIDAR sensors have a better accuracy, they are much more
expensive and hence we went with the IR sensors. They have a good range of 20 cm -
2m and would help us detect anomalies.
e Sampling Rate - The GPS updated location every half-a-second and hence we decided

that sensor polling rate be the same. As a result, our data polling rate was a little slower

than would be ideal to derive more meaningful metrics.




Lessons Learned

e Parts/Sensor Selection - One of the key lessons we learned is that parts selection must
be done keeping the operating conditions of the selected sensors in mind. The IR
sensors and the accelerometers worked with operating voltages of 5v and 3.3v
respectively and we spent a lot of time and effort interfacing both the sensors with the
same MCU.

e Migration to a different operating voltage - On deciding to a shift to different
operating voltage, we must make sure that all our parts would work with the newer
voltage.

In order to interface the accelerometer directly with the MCU, we decided to shift the
PCB to a 3.3 operating voltage. This would have impacted the performance of the IR
sensors as they only worked within 4.5v-5.5v; however our final PCB was connected to
RPi’s 5V and hence the IR sensors still worked with the new PCB. This meant that the
accelerometer could no longer be mounted on the PCB and had to be shifted to a
breadboard.

e Time spent on hardware components - When deciding on the overall schedule of the
project, some extra time must be allocated as buffer time in making the hardware
synchronize properly with the rest of the system. We spent a lot of our time and budget
on making the accelerometer work with our PCB. Although it was required, it would
have been useful to have some buffer time in our schedule just for this purpose as we
would have structured our goals differently.

What would you do differently if you could start from scratch?

e Lab 3 sensors - We should have chosen the sensors that we were thinking of using in the
final projects instead of the heartbeat sensor. This would have given us an opportunity
to work with those parts beforehand and would have allowed us to make any necessary
changes in our parts selection process.

e Comprehensive System Design - If starting from scratch, we would design the entire
system together and pick hardware and sensors that complemented each other better.
This time, we picked parts individually, without putting them into the context of the



entire system, and that led to a few problems we’ve already talked about (eg. the 3.3 vs
5 V voltage issue).

Future Work

e Compaction - A good starting point would be to work on making our prototype as
compact as possible. The IR sensors would still have to scale out from the prototype to
cover as many potholes as possible but the accelerometer could be moved off the
breadboard to sit on the PCB. There are two ways to achieve this - solder both the logic
level shifter and the accelerometer on the 5v PCB although we are limited by size here.
Otherwise, we could move the accelerometer to second 3.3v PCB and make the RPi poll
both the MCUs instead of just one to collect sensor data. Second option seems more
scalable here since there will always will be a limit on how many sensors we can attach
to a single PCB compared to having RPi poll multiple MCUs each specialized for a
different type of sensor(s).

e Power - At the moment, we are powering the RPi through a portable battery. To be able
to attach the prototype to a bus and collect data from it for 10 - 12 hours, we would
have to provide a more stable, long-lasting power source. The preliminary plan would
explore the following options - power the system with the portable battery and the
portable battery with the bus battery. Alternatively, we can directly power the system
with the bus battery. We do realize that there are safety issues to consider here and our
plan would best adhere to the regulations issued by the city authorities.

e Energy-efficient: Similar to cost-effectiveness, these devices should not place a huge
burden on any particular power source. Particularly, the embedded devices should be
able to run long times without changing batteries (this becomes irrelevant when the
devices are powered by the car battery in v2.0). We have designed a system to be
overall energy efficient. This means reducing the amount of power used by
microprocessors by using an interrupt system that allows the microprocessor to sleep
when no useful data is being collected. In contrast, the beacon must be less power
efficient because it has to handle massive amount of data coming in from multiple
processors and upload to the server via WiFi or 4G. This is unavoidable but the best
solution in terms of energy efficiency as a whole.



Related Work (Competition)

2017 Ford Fusion V6 -
http://www.motortrend.com/news/2017-ford-fusion-v6-sport-features-pothole-detection-syst
em/

Jaguar Land Rover -
https://www.theengineer.co.uk/issues/june-2015-online/jaguar-land-rover-unveils-pothole-det

ection-technology/

University of Colombo Research Paper -
https://pdfs.semanticscholar.org/6b44/e5504dd23ae33484eee01bb356eb0c61d3a7.pdf

Air Quality Sensors -
MIT Lab - http://news.mit.edu/2016/air-quality-sensors-track-pollution-0615

Noise Reduction System -
Sonitus Systems - http://www.sonitussystems.com/applications/environmental

References

Edge Detection Algorithm -
https://en.wikipedia.org/wiki/Edge detection

InfluxDB documentation -
https://docs.influxdata.com/influxdb/v1.2/

Flask Documentation and Examples -
http://flask.pocoo.org/docs/0.12/



https://en.wikipedia.org/wiki/Edge_detection
http://www.motortrend.com/news/2017-ford-fusion-v6-sport-features-pothole-detection-system/
http://flask.pocoo.org/docs/0.12/
http://news.mit.edu/2016/air-quality-sensors-track-pollution-0615
https://www.theengineer.co.uk/issues/june-2015-online/jaguar-land-rover-unveils-pothole-detection-technology/
https://docs.influxdata.com/influxdb/v1.2/
https://pdfs.semanticscholar.org/6b44/e5504dd23ae33484eee01bb356eb0c61d3a7.pdf
http://www.sonitussystems.com/applications/environmental
http://www.motortrend.com/news/2017-ford-fusion-v6-sport-features-pothole-detection-system/
https://www.theengineer.co.uk/issues/june-2015-online/jaguar-land-rover-unveils-pothole-detection-technology/

