
 1 Updated 9/28/00 5:49 PM

Elevator Requirements
18-540 Distributed Embedded Systems Project

Fall 2000

Updated September 17, 2000

Change log:
9/4 - significantly updated since draft of September 3 to fix a variety of bugs
9/8 – minor change to Drive object; DoorMotor updated to include requirement for
updating physical door position model.
9/9 – fixed a problem in 1.5.2 (for the second time – hopefully MS Word lets it stick this
time)
9/13 – The dispatcher is allowed to set DesiredDwell.
9/13 – DoorClosed, HallCall and CarCall are allowable inputs to dispatcher.
9/13 – DoorOpen[j] and DesiredFloor are allowable inputs to CarPositionControl.
9/14 – clarified that top and bottom floors each have only one hall call button.
9/14 – made the passengers explicitly activate door reversal when appropriate.
9/14 – changed “Hall_Lantern” to “CarLantern” (notational correction)
9/14 – change from Drive to Drivespeed in 6.5
9/15 – changed constraint 10.3 in an attempt to make it more clear
9/17 – added HoistwayLimit[d] to the input list and used drivespeed in drive control
9/21 – fixed CarLight /CarCall in #9 to reflect the lack of directional association
9/28 – Fixed 11.6 again. Word hates me.

Elevator Top-Level Requirements
• All passengers shall eventually be delivered to their intended destination floor.

• Any unsafe condition shall cause an emergency stop.

• An emergency stop should never occur.

• Performance shall be optimized to the extent possible, where performance is defined by
the formula:
 (4 * average_passenger_delivery_time) + maximum_passenger_delivery_time
Performance is improved by reducing that value (short delivery times are better).
Delivery time is counted from the time a passenger arrives at a floor to begin a trip and
ends when that passenger exits the elevator car. (Note: this is an arbitrary formula for
this project, but the general idea holds true for real elevators.)

Note:

 2 Updated 9/28/00 5:49 PM

The full set of example requirements provided should result in an elevator with safe
behavior that meets top-level requirements other than having poor optimization of
performance. While it is obvious that the Dispatcher behavior can be optimized, there are
also other, more subtle, behavioral optimizations possible as well.

 3 Updated 9/28/00 5:49 PM

Notation:
The Building the elevator is in has floors numbered from 1 .. MaxFloor.

Floor #1 is the Lobby.

“[...]” indicates an array of objects or values. There are f*d separate and distinct
AtFloor[f,d] sensors – d of them at each floor f.
 “(...)” indicates a list of values associated with a sensor/actuator. Single-valued
inputs/outputs can have the “(…)” omitted as a notational convenience.

The suffices "_up" "_down" and "_stop" may be used in lieu of a direction subscript. e.g.:
 HallCall_up[f]=HallCall[f,up]
 HallCall_down[f]=HallCall[f,down]
 AtFloor_stop[f]=AtFloor[f,stop]
(Note that in the above examples, “f” is a floor number.)

Similarly, subscripting may be eliminated in general if desired using an underscore
notation. e.g.:
 CarLantern_down
 EmergencyBrake_Engage

Multi-attributed items may have a particular state referred to by concatenating elements,
e.g.: Motor might have state FastUp or SlowDown. ("StopStop" can always be
abbreviated by "Stop")

Single attributes of a multi-attribute item are referred to using “.” notation. For example
DesiredFloor.f refers to attribute “f” of “DesiredFloor”.

If a letter instead of a value is used in a subscript, it is assumed that it can take any value.
If the same letter is used in multiple clauses within a single requirement element, it is
assumed that the letter takes the same value in all instances. For example, in the phrase:
 “AtFloor[f,d] ... CarCall[f] ... HallCall[g,d]”
The Floor f for AtFloor and CarCall can be any valid floor, but would have to be the
same floor. Similarly, direction d for AtFloor and HallCall could be any direction, but
would have to be the same direction. However, the floor for HallCall might or might not
be the same floor as for AtFloor and CarCall since it is a different symbolic letter.

Car refers to the elevator Car that travels in a hoistway. The movement of the Car itself
is hidden within the environment model and thus only indirectly observable/controllable
by the control system via sensors and actuators.

Because ultimately we will do this all in simulation, we’re going to make your life easy
by telling you the initial state of the system (the “initialization” state) such as putting the
elevator car at the lobby floor. In a real elevator the controllers have to figure out the
system state for themselves when power is applied.

 4 Updated 9/28/00 5:49 PM

System Sensors:
These sensor values are available for use by the control system. The below-listed values
will correspond to network messages in the implementation phase.

• AtFloor[f,d](v): Floor proximity sensor. v={True, False}.

One set of three per Floor[f], d={Up, Stop, Down}
d=Stop: Indicates True at a point where the Car is approximately level with Floor[f]. It
is assumed that the width of the Stop zone is such that the Drive has enough time to
switch from going at Slow speed to Stop and still have the car level with the floor.
d=Down: Above-floor position sensor. Indicates True when the Car is above Floor[f]
but close enough that the Car should be traveling at slow speed to be able to stop level
with Floor[f]. (In other words, this can be thought of as a "slow down " suggestion for
worst case downward velocity to stop a Floor[f].)
d=Up: the same as for d=Down, except it is the below-floor sensor, and applies to the
mirror situation, when the car is traveling upward.
Set to False at initialization, except the lobby d=Stop switch is set to True at
initialization.

• CarCall[f](v): Car Call buttons. v={True, False}.
One per Floor[f], all located in the CAR.
Set to False at initialization.

• DoorClosed[j](v): Door Closed switches. v={True, False}.
One per Door[j] for j={Left, Right}.
Indicates True when the Door is fully closed.
Set to True at initialization.

• DoorOpen[j] (v): Door Open switches. v={True, False}.
One per Door[j] for j={Left, Right}.
Indicates True when the Door[j] is fully open.
Set to False at initialization.

• DoorReversal[j](v): Door Reversal sensors. v={True, False}.
One per Door[j] for j={Left, Right}.
Indicates True whenever the Door[j] senses an obstruction in the doorway.
Set to False at initialization.

• HallCall[f,d](b): Hall Call buttons. b={Pressed, Idle}.
One pair per Floor[f], d={Up, Down}, located in the hallway on each Floor (topmost
floor does not have an Up button; bottom floor does not have a Down button).
Set to False at initialization.

• HoistwayLimit[d](v): Safety limit switches in the hoistway. v={True, False}.
One pair per Car, d={Up, Down}.
A HoistwayLimit[d] switch activates when the car has over-run the hoistway limits
(used as a trigger for emergency stopping). The d=Up switch is at top of hoistway;
d=Down switch is at bottom of hoistway.

 5 Updated 9/28/00 5:49 PM

Set to False at initialization.

• DriveSpeed(s,d): main drive speed readout. s is speed s={Fast, Slow, Go, Stop}
 d is direction d={Up, Down, Stop}
One per Car. Provides information about the current drive speed set by Drive(s,d) –
but this is the actual drive status rather than the status commanded by Drive(s,d).
(Note that there will be a time delay between commanding the drive to change speed
and the drive actually attaining that speed. DriveSpeed lets you know when the
commanded speed is actually attained.)
 s=Fast whenever drive is moving faster than it would at Slow speed
 s=Slow whenever the drive is moving at Slow speed
 s=Go whenever the drive is moving, but not moving fast enough to be at Slow speed
 s=Stop whenever the drive is fully stopped.

 6 Updated 9/28/00 5:49 PM

Environmental-Only Sensors:
These are pseudo-sensor values created to explain behavior of objects external to the
control system. They are not accessible to the control system, but have been used as the
specifications for building the simulation system.
• DoorPosition[j](x): Amount that door is open. x={float 0 .. 50}

One per Door[j] for j={Left, Right}.
Value is the amount the door is open as a percentage of doorway width. Since there are
two doors in the doorway, each DoorPosition can range from 0 to 50. With both doors
open at 50 the entire doorway (100%) is opened overall.
Set to 0 at initialization (door closed).

• CarPosition(x): Vertical position of car. x={float 0.. }
Tracks the position of the car in meters (not the same as floor number).
Set Lobby position at initialization.

 7 Updated 9/28/00 5:49 PM

System Actuators:
The below-listed values will correspond to network messages in the implementation
phase. All actuators are assumed to “remember” their last commanded value and stay
there unless commanded otherwise or forced otherwise by system/environment
constraints.
• DoorMotor[j](m): Door motor. m = {Open, Close, Stop}

One per Car Door[j] (note that there are two Doors per Car).
Opens and closes the door. It is permissible to transition directly from Open to Close
and Close to Open without first commanding a Stop.
Set to Stop at initialization; see DoorMotor object description for details.

• CarLantern[d](k): Car Lanterns. k = {On, Off}.
One set per Car, d={Up, Down}. These are the Up/Down arrows placed on the car
doorframe. Used by Passengers on a Floor to figure out whether to enter the Car.
Set to Off at initialization.

• CarLight[f](k): Car Call Button lights. k = {On, Off}.
One per CarCall[f] button. The light inside the car call button, used to indicate to
passengers that a car call has been registered by the dispatcher.
Set to Off at initialization.

• CarPositionIndicator(f): Position Indicator in Car. f={integer 1..MaxFloor}.
One per Car. Displays floor status information to the passengers in the Car.
Set to 1 at initialization.

• HallLight[f,d](k): Hall Call Button lights. k = {On, Off}.
One per HallCall[f,d] button. The light inside the hall call button, used to indicate to
passengers that a hall call at that Floor f has been registered by the Dispatcher for
direction d.
Set to Off at initialization.

• Drive(s,d): 2-speed main elevator drive. s is speed s={Fast, Slow, Stop}
 d is direction d={Up, Down, Stop}
One per Car. Moves the Car up and down the hoistway according to a velocity profile
that depends on a variety of physical factors.
Set to (Stop, Stop) at initialization; see Drive object for details.
Note that current Drive speed can be determined via DriveSpeed(s,d)

 8 Updated 9/28/00 5:49 PM

Environmental-Only Actuators:
• EmergencyBrake(b): Emergency stop brake. b={On, Off}

Supplies emergency braking in case of safety violation such as hoistway limit over-run
or movement with doors open. One per Car. Can be used exactly one time, after which
elevator hoistway requires significant repair maintenance. Triggering the
EmergencyBrake in simulation means that either a safety-critical sensor/actuator has
been broken or your elevator controller has attempted unsafe operation. (If the
EmergencyBrake activates during your final project demo due to an attempt of unsafe
operation, there will be a scoring penalty.)
Set to Off at initialization.

 9 Updated 9/28/00 5:49 PM

Control System State
The below-listed values will correspond to network messages in the implementation
phase.
• DesiredFloor(f,d): Dispatcher’s desired stopping Floor.

 f is desired Floor number, an integer
 d is direction d={Up, Down, Stop}
The dispatcher uses this to indicate the next floor to stop at. A direction of Stop means
that there is no preferred direction. Directions of Up and Down have the implication
that the elevator is “going up” or “going down” respectively.
This value may change dynamically and non-monotonically. Once Doors begin
opening the elevator is committed to perform a full Door cycle operation and
DesiredFloor can change to indicate the next Floor beyond the Floor where the Car is
currently positioned.

• DesiredDwell(n): Dispatcher’s desired dwell time for current Door open cycle.
 n is a long integer number of msec.
This is an optional way for the Dispatcher to override any dwell time used by the
DoorController.

 10 Updated 9/28/00 5:49 PM

Environmental Objects
These objects exist in the simulator, but are only accessible to the control system
indirectly via manipulation of actuators. (These are partial specifications; internal book-
keeping such as keeping track of where a passenger is and knowing the weight of the car
based on passenger count to model acceleration is not visible to the simulation.)

The objects associated with the following sensors and actuators are considered simple
and are not described in detail beyond definitions provided in the preceding system
sensor/actuator lists. In each case interfaces consist solely of the relevant sensor/actuator
state and any obvious interactions with the environment.
AtFloor[f,d]
CarCall[f]
DoorClosed[j]
DoorOpen[j]
DoorReversal[j]
HallCall[f,d]
HoistwayLimit[d]
DoorPosition[j]
CarLantern[d]
CarLight[f]
CarPositionIndicator
HallLight[f,d]
EmergencyBrake
CarPosition

Complex sensor, actuator, and environmental objects are discussed in the following
sections.

 11 Updated 9/28/00 5:49 PM

1. Passenger[p] (environmental object)

Replication:
• N passengers per system; N is unlimited subject to being less than steady-state carrying

capacity of elevator.

Instantiation:
• Zero passengers at initialization.

• Passengers arrive at floor landings as a Poisson process with mean interarrival times
varying per floor. Lobby arrivals comprise 25% to 50% of all arrivals.

• Passengers can be on a particular Floor[m] or on the Car.

Input Interface:
• DoorPosition[j]
• CarLantern[d]
• CarLight[f]
• CarPositionIndicator
• HallLight[f,d]

Output Interface:
• CarCall[f]
• DoorReversal[j]
• HallCall[f,d]

State:
• P_START[p]: a constant starting floor for Passenger p.

• P_DEST[p]: a constant destination floor for Passenger p.

• P_DIR[p]: a travel direction for Passenger p, which corresponds to the direction of
P_DEST[p] compared P_START[p].

• Passenger p is enqueued in an entry/exit queue, with one such queue per direction per
floor, and one queue for each destination in the Car. (i.e., there is a queue for going up
at each floor, a separate queue for going down at each floor, and a queue for each floor
for exiting the Car). The queue determines order of entry/exit and queue order is FIFO
based on order of arrival of the passenger to the queue. Any passenger not at the head
of a queue is blocked and must wait to be at the head of the queue before entering or
exiting the Car. Obviously passengers can only exit the queue when the Car is at the
correct floor going in the correct direction and the doors are sufficiently open.

CONSTRAINTS:
1.1 Passengers shall not enter a Car already containing 10 or more passengers.

 12 Updated 9/28/00 5:49 PM

1.2 Passengers are prevented from entering or exiting the Car whenever the Doors are
not far enough opened.

1.2.1 The value constituting the minimum acceptable total opening distance ranges
from 20% to 45% open, with the percentage randomly selected for each
Passenger.

BEHAVIORS:
1.3 A Passenger p at Floor f where HallLight[f,P_DIR[p]] is Off shall press

HallCall[f,P_DIR[p]].

1.3.1 Time to complete this behavior is stochastic, ranging from 400 msec to 5000
msec.

1.3.2 Each Passenger p shall press HallCall[f,P_DIR[p]] between 1 and 5 times
inclusive (stochastic) while the appropriate HallLight[f,P_DIR[p]] is Off. Each
time that appropriate HallLight transitions from On to Off, an additional 1-5
maximum presses per passenger is started in a similar manner.

1.4 A Passenger p at Floor f where CarLantern[f,P_DIR[p]] is On shall attempt to enter
the Car if unblocked and if the Door is sufficiently far open.

1.4.1 Additionally, a Passenger p at Floor f where all CarLantern[f, *]s are Off shall
attempt to enter the Car if unblocked and if the Door is sufficiently far open.

1.4.2 A passenger shall take 1 to 3 seconds (stochastic) to enter a Car once unblocked
and the Door is sufficiently far open to permit entry.

1.5 A Passenger p in Car where Car_Light[P_DEST[p]] is Off shall press
Car_Call[P_DEST[p]].

1.5.1 Time to complete this behavior is stochastic, ranging from 400 msec to 5000
msec.

1.5.2 Each Passenger p shall press CarCall[P_DEST[p]] between 1 and 5 times
inclusive (stochastic) while the appropriate CarLight is Off. Each time the
appropriate CarLight transitions from On to Off, an additional 1-5 maximum
presses per passenger is started in a similar manner.

1.6 A Passenger p in the Car at where Car_Indicator[P_DEST[p]] is On shall attempt to
exit the Car if unblocked and if the Door is sufficiently far open.

1.6.1 A passenger shall take 1 to 3 seconds (stochastic) to exit a Car once unblocked
and the Door is sufficiently far open to permit exit.

1.7 A passenger entering the Car shall wait until all passengers desiring to exit the Car
have exited. (i.e., all entering passengers are blocked while there exist exiting
passengers for that same floor)

1.8 If Doors become so far closed that an already-entering or already-exiting Passenger
would have been prevented from entering or exiting by Door position, and Doors
do not start opening within 100 msec, the passenger aborts entering/exiting the Car.

 13 Updated 9/28/00 5:49 PM

1.8.1 This abort process takes an additional 4 to 5 seconds (stochastic amount) to
return to the Passenger to the position held before starting the enter/exit process.

1.8.2 This Passenger blocks all other Passengers during this process.

1.8.3 This Passenger retains queue position, and thus normally retries entry/exit
immediately if possible.

1.8.4 This Passenger activates both DoorReversal[j]s.

 14 Updated 9/28/00 5:49 PM

2. Safety (environmental object)

Replication:
• One Safety object per car. This is a separate object to simplify system safety

certification.

Instantiation:
• The safety system starts assuming a safe system state at initialization (initialization

must ensure that an unsafe state is not transiently generated).

Input Interface:
• AtFloor[f,d]
• DoorClosed[j]
• DoorMotor[j]
• DoorReversal[j]
• HoistwayLimit[d]
• Drive
• DriveSpeed

Output Interface:
• EmergencyBrake

State:
None

BEHAVIORS:
2.1 If all AtFloor[f,stop]s are false and any DoorClosed[j] is false, set EmergencyBrake

to on.

2.2 If any DoorReversal[j] is true and any DoorMotor[q] is other than open for greater
than 200msec (accumulated while DoorReversal remains True), set
EmergencyBrake to on.

2.3 If any HoistwayLimit[d] is True, set EmergencyBrake to on.

2.4 If a Drive command is not “adjacent to” or the same as the current DriveSpeed
value for a period of longer than 100 msec, set EmergencyBrake to on.

2.4.1 The following pairs of {DriveSpeed, Drive} values are considered “adjacent”:
{FastUp, SlowUp},
{SlowUp, FastUp}, {SlowUp, Stop},
{GoUp, SlowUp }, {GoUp, Stop},
{Stop, SlowUp }, {Stop, SlowDown },
{GoDown, SlowDown }, {GoDown, Stop},
{SlowDown, FastDown}, {SlowDown, Stop},
{FastDown, SlowDown}.

 15 Updated 9/28/00 5:49 PM

3. Drive (environmental object)

Replication:
• 1 Drive per Car, which tracks position of Car in hoistway as well as Drive

direction/speed. The electric motor of the Drive is double-wound, so that if one
winding breaks the Drive can still deliver both slow and fast speeds at approximately
half the torque as for Slow and Fast of a fully operational drive. (There are many ways
to deal with failure modes – this is a simple one for this project.)

Instantiation:
• Drive is Off at initialization.

Input Interface:
• Drive
• EmergencyBrake

Output Interface:
• CarPosition
• HoistwayLimit[d]
• AtFloor[f,d]

State:
• F_position[f]: an array initialized with the vertical position of each floor; used

implicitly by the behaviors to determine floor position.

CONSTRAINTS:
3.1 If the EmergencyBrake is activated, it shall stop the Car regardless of Drive speed

and direction.

BEHAVIORS:
3.2 Drive(Stop,d) and Drive(s,Stop) shall stop the Car regardless of values for s or d.

3.2.1 The time to Stop the Car from Fast speed depends on the Car speed before Stop
is commanded and is determined by an acceleration profile.

3.2.2 The time to Stop the Car from Slow speed shall be less than 250 msec.

3.3 Drive(Slow,d), where d is not Stop, shall move the elevator at a slow speed in the
appropriate direction.

3.3.1 The time to achieve Slow speed depends on speed preceding the Slow
movement command and is determined by an acceleration profile.

3.3.2 The actual velocity at Slow speed depends on the drive equipment installed.

3.4 Drive(Fast,d), where d is not Stop, shall move the elevator at maximum possible
speed in the appropriate direction as determined by a velocity profile.

 16 Updated 9/28/00 5:49 PM

3.5 CarPosition shall be updated according to integration of Car speed as determined
by Drive() commands and an acceleration profile.

3.6 If CarPosition is greater than or equal to the position of the HoistwayLimit[Up]
switch, HoistwayLimit[Up] shall be set to on and remain on.

3.7 If CarPosition is less than or equal to the position of the HoistwayLimit[Down]
switch, HoistwayLimit[Down] shall be set to on and remain on.

3.8 AtFloor[f,Stop] shall be set on if and only if CarPosition is within 350 msec of
travel time of Floor position f at Slow speed in either direction.

3.9 AtFloor[f,Up] shall be set on if and only if CarPosition is below the position of
Floor f by a distance less than the worst-case stopping distance of the Car for that
Floor in that direction.

3.10 AtFloor[f,Down] shall be set on if and only if CarPosition is above the position of
Floor f by a distance less than the worst-case stopping distance of the Car for that
Floor in that direction.

 17 Updated 9/28/00 5:49 PM

4. DoorMotor[j] (environmental object)

Replication:
• Each Car has two DoorMotor[j]s, with each controlled by DoorController[j].

DoorMotor[j] tracks the actual position of the door.

Instantiation:
• Both DoorMotors are off at initialization.

Input Interface:
• DoorMotor[j]

Output Interface:
• DoorClosed[j]
• DoorOpen[j]
• DoorPosition[j]

State:
• D_position[j]: float with percent open of door, range of 0 to 50.

CONSTRAINTS:
4.1 D_position[j] shall be thresholded to the range 0..50 regardless of DoorMotor[j]

commands.

4.2 The Doors[j] themselves shall not activate DoorReversal[q] sensors.

4.3 DoorMotors[j] shall operate properly even if transitioned between Open and Close
in either direction without an intermediate Stop command.

BEHAVIORS:
4.4 DoorMotor[j](Stop) shall stop changes in door position within 100 msec.

4.5 DoorMotor[j](Open) and DoorMotor[j](Close) shall cause door[j] to Open and
Close respectively according to a velocity profile.

4.6 DoorClosed[j] shall be on if and only if DoorPosition[j] has a value less than 0.1.

4.7 DoorOpen[j] shall be on if and only if DoorPosition[j] has a value greater than 49.

4.8 DoorPosition[j] shall reflect the value of variable D_position[j].

4.9 D_position[j] shall be kept updated by a physical model to indicate current
positions of simulated doors.

 18 Updated 9/28/00 5:49 PM

Elevator Control System Objects

5. DoorControl[j]

Replication:
• Each Car has two DoorControllers[j]. Each Door[j] contributes from 0% to 50% to the

DoorPosition[j] (100% = both Doors open; 50% = one Door open or both Doors half-
open, or some combination; 0%= both Doors fully closed).

Instantiation:
• DoorControllers[j] shall command Doors[j] to close at initialization.

Input Interface:
• AtFloor[f,d]
• Drive
• DesiredFloor
• DesiredDwell
• DoorClosed[j]
• DoorOpen[j]
• DoorReversal[j]
• CarCall[f]
• HallCall[f,d]

Output Interface:
• DoorMotor[j]

State:
• Cycles[j], integer with number of door cycles performed; initialized to 0.

• Dwell[j], long integer with number of msec desired for door dwell during current cycle.

• CurrentFloor, is a shorthand notation for the value of whichever AtFloor[f,stop] is true,
if any. If CurrentFloor is invalid it has a mnemonic value of None.

• CountDown[j]: a count-down timer for Door Dwell[j] (implemented in simulation by
scheduling a future task execution at time of expiration)

CONSTRAINTS:
5.1 All DoorClosed[j] shall be true when there is no AtFloor[f,stop] that is true.

5.2 Any DoorReverse[j] cannot be true for more than an accumulated time of 50 msec
without causing all DoorControllers[q] to perform an Open command.

5.3 Doors keep moving in desired direction unless commanded otherwise, subject to
the constraints of the Door object.

 19 Updated 9/28/00 5:49 PM

5.4 All Doors should be commanded to identical positions at all times.

BEHAVIORS:
5.5 If AtFloor[f,d] is None set Cycles[j] to zero.

5.6 If any DoorReversal[q] is True then: command DoorMotor[j] to Open; increment
Cycles[j]; set Dwell[j] to an appropriate value.

5.7 If CurrentFloor equals DesiredFloor.f, and Drive is commanded to Stop, and
Cycles[j] is zero then: command DoorMotor[j] to Open; increment Cycles[j]; set
Dwell[j] to an appropriate value.

5.8 If CurrentFloor equals DesiredFloor.f, and Drive is commanded to Stop, and either
(HallCall[CurrentFloor,DesiredFloor.d] is true) or (any HallCall[CurrentFloor,*) is
true and DesiredFloor.d is stop), then: command DoorMotor[j] to Open; increment
Cycles[j]; set Dwell[j] to an appropriate value.

5.9 If CurrentFloor equals DesiredFloor.f, and Drive is commanded to Stop, and
CarCall[CurrentFloor] is True, then: command DoorMotor[j] to Open; increment
Cycles[j]; set Dwell[j] to an appropriate value.

5.10 When DoorOpen[j] transitions from False to True: set CountDown[j] to Dwell[j];
command DoorMotor to Stop.

5.11 When DoorClosed[j] transitions from False to True: command DoorMotor to Stop.

5.12 When CountDown[j] transitions to zero: command DoorMotor to Close.

 20 Updated 9/28/00 5:49 PM

6. DriveControl

Replication:
• There is one DriveControl, which controls the elevator Drive (the main motor moving

Car Up and Down). For simplicity we will assume this node never fails, although the
system could be implemented with two such nodes, one per each of the Drive
windings.

Instantiation:
• DriveControl initializes to Stopping the Drive.

Input Interface:
• AtFloor[f,d]
• DoorClosed[j]
• DoorMotor[j]
• EmergencyBrake
• DesiredFloor
• DriveSpeed
• HoistwayLimit[d]

Output Interface:
• Drive

State:
• DesiredDirection = {Up, Down, Stop} computed desired direction based on comparing

current floor position with Floor desired by Dispatcher. This is implicitly computed
and used as a macro in the behavior descriptions.

• CurrentFloor, is a shorthand notation for the value of whichever AtFloor[f,Stop] is
True, if any. If CurrentFloor is invalid it has a mnemonic value of None.

CONSTRAINTS:
6.1 Drive shall have been commanded to Stop whenever any DoorClosed is False.

6.2 Drive shall have been commanded to be Stop whenever any DoorMotor is
commanded to Open.

6.3 The commanded value of Drive shall either be the same as or “adjacent to” the
value of DriveSpeed.

6.3.1 The following pairs of {DriveSpeed, Drive} values are considered “adjacent”:
{FastUp, SlowUp},
{SlowUp, FastUp}, {SlowUp, Stop},
{GoUp, SlowUp }, {GoUp, Stop},
{Stop, SlowUp }, {Stop, SlowDown },
{GoDown, SlowDown }, {GoDown, Stop},

 21 Updated 9/28/00 5:49 PM

{SlowDown, FastDown}, {SlowDown, Stop},
{FastDown, SlowDown}.

6.4 Drive should be Stopped whenever EmergencyBrake is activated.

BEHAVIORS:
6.5 If Drive is Stopped, and all DoorClosed[j] are True, and CurrentFloor is not equal

to DesiredFloor.f, and all DoorMotor[j] are commanded to Stop, then command
Drive to (Slow, DesiredDirection).

6.6 If Drivespeed is (Slow, d) and AtFloor[DesiredFloor.f,d] is False, command Drive
to (Fast, d).

6.7 If Drive is commanded to (Fast, d) and AtFloor[DesiredFloor.f,d] is True,
command Drive to (Slow, d).

6.8 If Drivespeed<=(Slow, d) and AtFloor[DesiredFloor.f,Stop] is True, command
Drive to (Stop, Stop).

6.9 If EmergencyBrake is On, then command Drive to (Stop, Stop).

6.10 If any HoistwayLimit[d] is True, then command Drive to (Stop, Stop).

 22 Updated 9/28/00 5:49 PM

7. LanternControl[d]

Replication:
• Two controllers, one for each lantern {Up, Down} mounted in the Car by the Car

Doors.

Instantiation:
• Lanterns are Off at initialization.

Input Interface:
• DoorClosed[j]
• DesiredFloor
• AtFloor[f,d]

Output Interface:
• CarLantern[d]

State:
• DesiredDirection = {Up, Down, Stop} computed desired direction based on comparing

CurrentFloor with Floor desired by Dispatcher. This is implicitly computed and used
as a macro in the behavior descriptions.

• CurrentFloor, is a shorthand notation for the value of whichever AtFloor[f,Stop] is
True, if any. If CurrentFloor is invalid it has a mnemonic value of None.

CONSTRAINTS:
7.1 Both CarLanterns[d] shall not be On at the same time.

BEHAVIORS:
7.2 Whenever any DoorClosed[j] is False, CarLantern[DesiredDirection] shall be On.

7.2.1 If DesiredDirection is Stop, neither lantern shall illuminate.

7.3 Whenever both DoorClosed[j] are True, CarLantern[d] shall be Off.

 23 Updated 9/28/00 5:49 PM

8. HallButtonControl[f,d]

Replication:
• There are two HallButtonControllers[f,d] per floor f, one for each of the Up and Down

HallCall buttons (topmost floor does not have an Up button; bottom floor does not
have a Down button). These accept HallCall button presses as well as control
HallLight feedback lights.

Instantiation:
• All HallCalls are false at initialization.

• All HallLights are off at initialization.

Input Interface:
• DesiredFloor
• HallCall[f,d]

Output Interface:
• HallLight[f,d]

State:
None

CONSTRAINTS:
None

BEHAVIORS:
8.1 When HallCall[f,d] is True, command HallLight[f,d] to On.

8.2 Command HallLight[DesiredFloor.f, DesiredFloor.d] to Off.

8.2.1 If DesiredFloor.d is Stop, command both HallLight[DesiredFloor.f, q] to Off.

 24 Updated 9/28/00 5:49 PM

9. CarButtonControl[f]

Replication:
• There is one CarButtonController per floor, with all controllers located in the Car.

These accept CarCall button presses as well as control CarLight feedback lights.

Instantiation:
• All CarCalls are false at initialization.

• All CarLights are off at initialization.

Input Interface:
• DesiredFloor
• CarCall[f]

Output Interface:
• CarLight[f]

State:
None

CONSTRAINTS:
None

BEHAVIORS:
9.1 When CarCall[f] is True, command CarLight[f] to On.

9.2 Command CarLight[DesiredFloor.f] to Off.

 25 Updated 9/28/00 5:49 PM

10. CarPositionControl

Replication:
• There is one CarPositionControl instance in the car, which feeds values to the

CarPositionIndicator.

Instantiation:
• The Car is initialized on the first Floor (Lobby).

Input Interface:
• AtFloor[f,d]
• DoorOpen[j]
• DesiredFloor

Output Interface:
• CarPositionIndicator(f)

State:
• CurrentFloor, is a shorthand notation for the value of whichever AtFloor[f,Stop] is true,

if any. If CurrentFloor is invalid it has a mnemonic value of None.

CONSTRAINTS:
10.1 The Car can be at only one position at a time.

10.2 The CarPositionIndicator shall display the current floor whenever doors are open.

10.3 The floor indicated by the car position indicator shall only change by one floor in
either direction per update cycle, and should be a close approximation to the car's
actual position. The direction of change shall be in the same direction the Drive is
moving. By "close approximation" we mean within stopping distance in the
direction of motion.

BEHAVIORS:
10.4 Whenever any DoorOpen is True, CarPositionIndicator shall be commanded to

display CurrentFloor.

10.5 Whenever all DoorOpens are False, CarPositionIndicator shall be commanded to
display DesiredFloor.f.

 26 Updated 9/28/00 5:49 PM

11. Dispatcher

Replication:
• There is one Dispatcher in the system, corresponding with the Car.

Instantiation:
• The Dispatcher is initialized to send the car to the Lobby, have the Lobby as the

desired destination, and have a preferred direction of “Stopped” (i.e., no preferred
direction).

Input Interface:
• AtFloor[f,d]
• DoorClosed[j] (optional)
• HallCall[f,d] (optional)
• CarCall[f] (optional)

Output Interface:
• DesiredFloor
• DesiredDwell.

State:
• Target: an integer Floor number for desired Floor, initialized to Lobby+1 = 2.

• CurrentFloor, is a shorthand notation for the value of whichever AtFloor[f,Stop] is
True, if any. If CurrentFloor is invalid it has a mnemonic value of None.

CONSTRAINTS:
11.1 Target shall be a valid Floor number from 1 .. MaxFloor inclusive.

11.2 The desired direction d of DesiredFloor(f,d) shall not be Up when d = MaxFloor

11.3 The desired direction d of DesiredFloor(f,d) shall not be Down when d = 1

BEHAVIORS:
11.4 DesiredFloor.f shall always be set to Target.

11.5 DesiredFloor.d shall always be set to Stop.

11.6 Whenever any DoorClosed [j] is False, Target shall be set equal to
(CurrentFloor mod MaxFloors) + 1)

11.7 DesiredDwell shall always be set to a constant appropriate value for door open
dwell.

 Project 4
Due:
Wednesday
October 25,
4PM

Project #3
Solution is
available
here. Please submit all project-related correspondence to the following (all four addresses on every

message, including follow-ups):
jdevale@ece.cmu.edu, cmartin@andrew.cmu.edu, koopman@ece.cmu.edu,
jondaley@andrew.cmu.edu. If you don't use all four addresses, we can't promise you'll get a
timely response.

Assignment

In this assignment you're going to design tests for the code that you will write in the next
assignment. We're going to require you to do testing at two levels: module test and system
integration test. In real life it is likely that even more testing would be required to assure product
quality. In industry, it is common to have about one tester for every developer on a project team (the
ratio varies, but it is often in the range of 1-2 testers out of every 3 people in a software project
team).

The results of this assignment will be more than just a paper product -- you'll be generating tests
that you can execute when you think you have your code developed in the next assignment.

Why testing isn't just debugging

Believe it or not, the primary purpose of testing is not to find bugs. Instead, testing provides a way
to measure the quality of a design and implementation. Thus, it is important when designing and
executing tests to keep in mind that a failed test case means more than simply a bug was found -- it
means that the system design and implementation process failed in some respect. Finding a bug also
suggests that other similar problems are likely to exist elsewhere in the project, caused by possible
systematic problems with the process used to create the system being tested. This is something to
keep in mind when you're using these tests in the next assignment.

Beyond the fact that testing is a quality assurance activity, there is a fundamental difference
between debugging and testing in what you're allowed to do. In debugging you can insert extra print
statements and in general change implementations to help understand what is going on. In testing
you must take a module as it is intended to be used in the final program and exercise it using only
its intended inputs and outputs. For this project that means that in module tests you must input and
observe network messages; in system integration tests you must input and observe passenger object
behaviors and system sensors/actuators.

1 of 5 11/26/00 4:51 PM

Project 4 http://www.ece.cmu.edu/~ece540/project/proj4/index.html

Module Test (assignment part 1 of 2):

Create tests that exercise all transitions of your design (i.e., all arcs on your state diagrams)
EXCEPT the dispatcher.

Module test for this project means testing the behavior of a single system object such as a door
controller or the dispatcher. These tests are derived from the system design, and should completely
cover all states and transitions in your state diagrams to ensure that code that is written actually
implements the intended design.

The general format of the system implementation will be that there is a simulation framework that
"glues" together all the different system objects, both ones you design and ones we're designing for
you. You are responsible for implementing and testing the objects you've designed in previous
assignments; we're responsible for implementing and testing objects we provided complete
requirements for back on assignment #1 as well as the simulation framework. You do not have to
provide tests for the objects we're providing to you.

We will be providing a special diagnostic object to you which has the purpose of taking a plain text
file describing messages to be sent on the network and actually sending them out on the network at
specific times. This diagnostic object also records all network messages and places them in an
output file. If you put this diagnostic object and one or more other objects into the system
framework you can run single-module tests by sending specific messages at specific times and
observing that correct outputs are produced.

The module test file format is:

<seconds>,<rep_interval>,<message_type>,<data_field1>{,..,<data_fieldn>}

Where each line of the file generates a single copy of a single message onto the network at the time
specified. <seconds> is a floating point number of seconds; <rep_interval> is the repetition interval
(in floating point seconds) for the message, with zero being a single event message;
<message_type> is the name of a message as listed in assignment #1; the <[instance]> is an
appropriate instance index number; and the data fields are as documented. Comments are indicated
by a ";", with the comment extending to the end of a physical line. Any modules in the system will
be fed an "initialize" signal before the testing begins.
CLICK HERE TO SEE EXAMPLES OF ALL SUPPORTED MESSAGE TYPES.

The assignment is to generate a set of files that are sufficient to completely test all your designs
EXCEPT the dispatcher. Each file can test more than one thing, but ideally tests are shorter rather
than longer. We're going to leave the details of how to accomplish things to you, but to be correct a
test must somehow address all the below points:

Name of module it is supposed to be testing. Each test file should be associated with one and
only one module.
List of arcs/states within the module that are tested (this is an extension of traceability from
assignment #3 -- now you can trace from requirements through design and into unit test). Note
that when all your tests are added together you should account for all the arcs and states in the
design of each module.
After each message, a statement of what you expect to observe happening, if anything, that

2 of 5 11/26/00 4:51 PM

Project 4 http://www.ece.cmu.edu/~ece540/project/proj4/index.html

constitutes a "pass" of the test. Or in some cases it will be easier to say what constitutes a
"failure".

CLICK HERE FOR AN EXAMPLE TEST FILE. (You are welcome to copy this example verbatim
for your project assignment, assuming it fits your solution.

Designing these tests may require some assumptions about timing. Assume that the elevator can
move at a rate faster than 10 seconds per floor, and that door cycling takes 5 seconds. You should
include in comments any timing-sensitive conditions that you might have to set up when you
actually have code running. For example, you might have a time of "X" and in the comments put
"set X to be exactly the time at which the first door closed switch goes true".

We found it convenient to use an Excel spreadsheet to generate these tests, then just export to a text
file. You can obtain a copy of the spreadsheet file corresponding to the test file BY CLICKING
HERE. Excel is neither required nor supported for this project -- this is simply a hint that you might
find useful.

System Integration Test (assignment part 2 of 2):

Create tests that exercise specified operation sequences

In real systems this is where the fun begins. If used as a debugging exercise, system integration can
easily take as much time as writing the code in the first place. So what is often done is to use a
simulation (the thing you're building for this project) to find system integration quirks before real
hardware/software implementation begins.

Integration testing will be performed in much the same way as module testing was performed,
except that the file used to insert the workload will give passenger actions, and the output file will
record how sensors and actuators in the system perform. Thus, you'll position passengers at various
floors in the building at particular times, with each passenger having a specific starting floor and
ending floor. Then you get to monitor whether the system actually performed the way it was
supposed to.

The system integration test file format is:

<seconds>,<start_floor>,<destination_floor> ; <comment_field>

Where each line of the file creates a single passenger at time <seconds>. That passenger starts on
floor <start_floor>, and will behave in such a way as to go to <destination_floor>. Tests with this
input file are run with all modules in the system loaded. The entire system is initialized before the
testing begins.

As with module test, assume that the elevator can move at a rate faster than 10 seconds per floor,
and that door cycling takes 5 seconds. You should include in comments any timing-sensitive
conditions that you might have to set up when you actually have code running. For example, you
might have a time of "X" and in the comments put "set X to be exactly the time at which the first
door closed switch goes true".

3 of 5 11/26/00 4:51 PM

Project 4 http://www.ece.cmu.edu/~ece540/project/proj4/index.html

For this project assignment you must provide test files for the following situations. We recommend
you generate more that this to help you ensure that your project is really working, but only the
following are required by this particular assignment:

Test of two passengers going in opposite directions from the same floor:
Starting from an initialized system, passenger "A" calls the car to go from floor 3 to floor 7;
Passenger "B" calls the car to go from floor 3 to floor 2 after Passenger "A" makes his call, but
before the elevator arrives.
Test of same-floor pickup from idle system and test of direction turnaround when dropping
off:
Starting from an initialized system, passenger "A" calls the car from floor 1 at time 30
seconds, with destination of floor 6. After passenger "A" is in the car and heading up but
before the car has passed floor 3 (really, what we mean is before the car is anywhere near floor
6), passenger "B" calls the car from floor 6 going to floor 4. If you have a non-trivial
dispatcher you might well see some interesting behavior as the car executes a direction change;
this is one that the Wean Hall elevators used to display a decade ago.
Test of door controller.
Create a test that ensures that every requirement for door controller is met from your original
requirements document (NOT based on the state charts). It is common for a separate testing
group to devise such tests independent of the developers as an independent check that nothing
has been overlooked.

Grading Criteria
Once again, this is not about perfection, which we know to be unattainable. Your design will be
graded as follows:

You must cover each and every transition in each and every state chart design you have created
EXCEPT the dispatcher. (Actually, we urge you to do the dispatcher too, but we don't want to
incentivize groups to dumb down their dispatcher. If you give us tests for your dispatcher we'll
take a look at them for you, but any problems with dispatcher tests will NOT affect your
grade.)
You must clearly state traceability to state transition arcs in comments in the test files, and
include all other required comment information. Include any updated copy of your state
transition diagrams with this assignment (they'll not be graded other than to ensure all the arcs
are covered by tests).
You must address the required system tests; others may be included for critique but will NOT
affect your grade.

Submission

Via AFS as usual. Please include your latest design & requirements documents updated in light of
any changes you've had to make as a result of insight gained by designing tests.

4 of 5 11/26/00 4:51 PM

Project 4 http://www.ece.cmu.edu/~ece540/project/proj4/index.html

; Test for Drive Control
0.00 0.00 atfloor 2 stop ; * Test Down leg
0.00 0.00 desiredfloor 1 stop ; T6E should order drive to slow
1.00 0.00 drivespeed down slow ; T6F should order drive to fast
2.00 0.00 drivespeed down fast ; Set true speed to fast
3.00 0.00 atfloor 1 down ; T6G setatfloor to cause control to transition to slow
4.00 0.00 atfloor 1 stop ; T6H setatfloor to cause control to transition to stop
*
0.00 0.00 atfloor 2 stop ; T6A * Test Up Leg
0.00 0.00 desiredfloor 3 stop ; T6B should order drive to slow
1.00 0.00 drivespeed up slow ; should order drive to fast
2.00 0.00 drivespeed up fast ; Set true speed to fast
3.00 0.00 atfloor 3 up ; T6C setatfloor to cause control to transition to slow
4.00 0.00 atfloor 3 stop ; T6D setatfloor to cause control to transition to stop
*
0.00 0.00 atfloor 2 stop ; * Test Negative transition
0.00 0.00 desiredfloor 3 stop ; T6A *
0.00 0.00 doorclosed left false ; T6A
1.00 0.00 doorclosed right false ; T6A
2.00 0.00 doorclosed left true ; T6A
3.00 0.00 doorclosed right true ; T6A
4.00 0.00 desiredfloor 3 stop ; T6A *
*
0.00 0.00 atfloor 2 stop ; * Test Negative transition
0.00 0.00 desiredfloor 1 stop ; T6A *
0.00 0.00 doorclosed left false ; T6A
1.00 0.00 doorclosed right false ; T6A
2.00 0.00 doorclosed left true ; T6A
3.00 0.00 doorclosed right true ; T6A
4.00 0.00 desiredfloor 1 stop ; T6A *
*
0.00 0.00 atfloor 2 stop ; * Test Down leg motor stops
0.00 0.00 desiredfloor 1 stop ; T6E should order drive to slow
1.00 0.00 doormotor left open ; T6J should order drive to stop
*
0.00 0.00 atfloor 2 stop ; * Test Down leg motor stops
0.00 0.00 desiredfloor 1 stop ; T6E should order drive to slow
1.00 0.00 doormotor right open ; T6J should order drive to stop
*
0.00 0.00 atfloor 2 stop ; * Test Up Leg motor stops
0.00 0.00 desiredfloor 3 stop ; T6A should order drive to slow
1.00 0.00 doormotor left open ; T6J should order drive to stop
*
0.00 0.00 atfloor 2 stop ; * Test Up Leg motor stops
0.00 0.00 desiredfloor 3 stop ; T6A should order drive to slow
1.00 0.00 doormotor right open ; T6J should order drive to stop
*
0.00 0.00 atfloor 2 stop ; * Test Down leg fast motor stops
0.00 0.00 desiredfloor 1 stop ; T6E should order drive to slow
1.00 0.00 drivespeed down slow ; T6F should order drive to fast
2.00 0.00 drivespeed down fast ; Set true speed to fast
3.00 0.00 doormotor left open ; T6J should order drive to stop
*
0.00 0.00 atfloor 2 stop ; * Test Down leg fast motor stops
0.00 0.00 desiredfloor 1 stop ; T6E should order drive to slow
1.00 0.00 drivespeed down slow ; T6F should order drive to fast
2.00 0.00 drivespeed down fast ;
3.00 0.00 doormotor right open ; T6J should order drive to stop
*
0.00 0.00 atfloor 2 stop ; * Test Up Leg fast motor stops
0.00 0.00 desiredfloor 3 stop ; T6A should order drive to slow
1.00 0.00 drivespeed up slow ; T6B should order drive to fast
2.00 0.00 drivespeed up fast ;
3.00 0.00 doormotor left open ; T6J should order drive to stop

1 of 3 11/26/00 4:57 PM

http://www.ece.cmu.edu/~ece540/project/proj4/testfile.txt

18-540 Fall 2000
Supported Message Types

Message Types

AtFloor
CarCall
CarLantern
CarLight
CarPositionIndicator
CarPosition
DesiredDwell
DesiredFloor
DoorClosed
DoorMotor
DoorOpened
DoorPosition
DoorReversal
Drive
DriveSpeed
EmergencyBrake
HallCall
HallLight
HoistwayLimit

Module Test File Format

<seconds>,<rep_interval>,<message_type>,<data_field1>, .. ,<data_fieldN> ;
<comment_field>

(Note: the above example must be on a single physical line in the file, even if your web browser makes it
appear to wrap around onto more than one line.)

<seconds> is a floating point number of seconds into the simulation to start sending the message
<rep_interval> is the floating point number of seconds at which to repeat the message (the message
period); zero sends a single message instead of a repeating message.
<message_type> is the alphanumeric message type; case-insensitive.
<data_field1>,...,<data_fieldN> is a set of data specific to that message type.
; <comment_field> is an optional comment field delimited by a ";" and stretching to end of physical

1 of 11 11/26/00 4:52 PM

Supported Message Types - 18-540 Fall 2000 http://www.ece.cmu.edu/~ece540/project/proj4/supported_message_types.html

line

(Additional Notes:
- Fields may be delimited by either commas or whitespace.
- More than one copy of a message can be active at a time; however the harness will replace an older
instance of a repeating message with a newer instance if all data fields relevant to replication match.
- An asterisk ("*") in column 1 resets the simulation, permitting multiple tests to be included in a single
file.)

AtFloor

This message indicates that the car has activated one of the locations sensors (known as
atfloor) due to its physical location. These sensors provide your only accessible
knowledge of car position.

message_type = atfloor

data_field1 = floorNumber

 Where floorNumber is the number of the floor the particular atfloor sensor is associated
with

data_field2 = direction

 Where direction is [up|down|stop], and indicates which of the 3 sensors associated with
each floor the message pertains to.

data_field3 = value

 Where value is [true|false], and indicates if the sensor detects the car(true) or not(false)

module test example:

1.12 0.1 atfloor 5 up true

CarCall

This message is sent to convey the status of a car call button

2 of 11 11/26/00 4:52 PM

Supported Message Types - 18-540 Fall 2000 http://www.ece.cmu.edu/~ece540/project/proj4/supported_message_types.html

message_type = carcall

data_field1 = floorNumber

 Where floorNumber is the number of the floor the particular atfloor sensor is associated
with

data_field2 = buttonValue

 Where buttonValue is [true|false], and indicates if the button is currently pressed (true)
or not (false)

module test example:

1.12 0.1 carcall 5 false

CarLantern

This message orders one of the car lanterns to turn on or off

message_type = carlantern

data_field1 = direction

 Where direction is [up|down] and indicates which lantern the message refers to

data_field2 = value

 Where value is [true|false], and indicates if the light is ordered on (true) or off (false)

module test example:

1.12 0.1 carlantern up true

CarLight

3 of 11 11/26/00 4:52 PM

Supported Message Types - 18-540 Fall 2000 http://www.ece.cmu.edu/~ece540/project/proj4/supported_message_types.html

This message orders one of the car button lights to turn on or off

message_type = carlight

data_field1 = floornumber

 Where floornumber is [1..maxfloor] and indicates which car button light the message
refers to

data_field2 = value

 Where value is [true|false], and indicates if the light is ordered on (true) or off (false)

module test example:

1.12 0.1 carlight 2 true

CarPositionIndicator

This message orders the car position indicator to indicate the specified floor number

message_type = carpositionindicator

data_field1 = floornumber

 Where floornumber is [1..maxfloor] and indicates which car button light the message
refers to

module test example:

0.5 0.5 carpositionindicator 4

CarPosition

This message is generated by the Drive object, and tells the other components the physical
location of the car within the shaft. It is not necessary for testing the non-environmental

4 of 11 11/26/00 4:52 PM

Supported Message Types - 18-540 Fall 2000 http://www.ece.cmu.edu/~ece540/project/proj4/supported_message_types.html

components, and thus cannot be generated by this testing facility.

DesiredDwell

This message tells the DoorMotor how long it is desired to keep the doors open, once they
have achieved the fully open state

message_type = desireddwell

data_field1 = dwell

 Where dwell is the number of milliseconds, and is a type long value

module test example:

1.5 0.5 desireddwell 5000

DesiredFloor

This message is the way the dispatcher communicates its desire to have the car stop at a
particular floor. It also indicates which direction the car is expected to go upon leaving
that floor.

message_type = desiredfloor

data_field1 = floorNumber

 Where floorNumber is the number of the floor dispatcher is ordering the car to

data_field2 = direction

 Where direction is [up|down|stop], and indicates which direction the car will move
upon leaving the floor

module test example:

0.5 0.5 desiredfloor 2 up

5 of 11 11/26/00 4:52 PM

Supported Message Types - 18-540 Fall 2000 http://www.ece.cmu.edu/~ece540/project/proj4/supported_message_types.html

DoorClosed

This message indicates if the doors are fully closed or not.

message_type = doorclosed

data_field1 = whichdoor

 Where whichdir is [left|right] and indicates which door is being referred to

data_field2 = value

 Where direction is [true|false], and indicates if the doors are fully closed [true] or not
[false]

module test example:

1.12 0.1 doorclosed left true

DoorMotor

This message is how the door motor controller orders the door motors to a specific state
(open, close, stop)

message_type = doormotor

data_field1 = whichdoor

 Where whichdir is [left|right] and indicates which door is being referred to

data_field2 = value

 Where value is [open|close|stop], and indicates what the door motor should do

6 of 11 11/26/00 4:52 PM

Supported Message Types - 18-540 Fall 2000 http://www.ece.cmu.edu/~ece540/project/proj4/supported_message_types.html

module test example:

1.12 0.1 doormotor left stop

DoorOpened

This message indicates if the doors are fully open or not.

message_type = dooropened

data_field1 = whichdoor

 Where whichdir is [left|right] and indicates which door is being referred to

data_field2 = value

 Where direction is [true|false], and indicates if the doors are fully open [true] or not
[false]

module test example:

1.12 0.1 dooropened left false

DoorReversal

This message is sent by the door reversal sensor and indicates if the door reversal sensor is
true (activated) or false.

message_type = doorReversal

data_field1 = whichdoor

 Where whichdir is [left|right] and indicates which door is being referred to

data_field2 = value

7 of 11 11/26/00 4:52 PM

Supported Message Types - 18-540 Fall 2000 http://www.ece.cmu.edu/~ece540/project/proj4/supported_message_types.html

 Where direction is [true|false], and indicates if the sensor has been activated [true] or
not [false]

module test example:

1.12 0.1 doorreversal left true

DoorPosition

This message indicates the position of the doors, and is only used by environmental
objects (i.e. the people, door opened/closed sensors and the Drive). It is not necessary for
testing the non-environmental components, and thus cannot be generated by this testing
facility.

Drive

This message is how the drive controller orders the drive to a specific direction and speed.

message_type = drive

data_field1 = direction

 Where whichdir is [up|down|stop] and indicates in which direction the drive should
move

data_field2 = speed

 Where value is [slow|fast|stop], and indicates at what speed the drive should move

module test example:

1.12 0.1 drive up fast

8 of 11 11/26/00 4:52 PM

Supported Message Types - 18-540 Fall 2000 http://www.ece.cmu.edu/~ece540/project/proj4/supported_message_types.html

DriveSpeed

This message is how the drive tells the drive controller at what speed it is currently
moving

message_type = drivespeed

data_field1 = direction

 Where whichdir is [up|down|stop] and indicates in which direction the drive is moving

data_field2 = speed

 Where value is [go|slow|fast|stop], and indicates at what speed the drive is moving

module test example:

1.12 0.1 drivespeed up slow

EmergencyBrake

This message is sent by the safety system when the emergency brake is activated

message_type = emergencybrake

data_field1 = value

 Where value is [true|false], and indicates if the brake is activated (true) or off (false)

module test example:

10.0 0.0 emergencybrake true

HallCall

9 of 11 11/26/00 4:52 PM

Supported Message Types - 18-540 Fall 2000 http://www.ece.cmu.edu/~ece540/project/proj4/supported_message_types.html

This message indicates the status of a specific hall call button, and indicates if it is
currently pressed or not

message_type = hallcall

data_field1 = floorNumber

 Where floorNumber is the number of the floor on which the button is located

data_field2 = direction

 Where direction is [up|down], and indicates which of the 2 buttons (up or down) the
message pertains to

data_field3 = value

 Where value is [true|false], and indicates if the button is pressed(true) or not(false)

module test example:

1.1 0.3 hallcall 12 up true

HallLight

This message is how the hall light controller orders the hall light to turn on/off

message_type = hallLight

data_field1 = floorNumber

 Where floorNumber is the number of the floor on which the light is located

data_field2 = direction

 Where direction is [up|down], and indicates which of the 2 lights (up or down) the
message pertains to

data_field3 = value

10 of 11 11/26/00 4:52 PM

Supported Message Types - 18-540 Fall 2000 http://www.ece.cmu.edu/~ece540/project/proj4/supported_message_types.html

 Where value is [true|false], and indicates if the light is on(true) or off(false)

module test example:

0.6 0.25 hallLight 132 up true

HoistwayLimit

This message is sent when the car activates one of the hoistway limit switches(up/down)

message_type = hoistwaylimit

 Where direction is [up|down], and indicates which of the 2 limit switches (up or down)
the message pertains to

data_field3 = value

 Where value is [true|false], and indicates if the switch is activated(true) or not(false)

module test example:

1.08 0.0 hoistwaylimit false

11 of 11 11/26/00 4:52 PM

Supported Message Types - 18-540 Fall 2000 http://www.ece.cmu.edu/~ece540/project/proj4/supported_message_types.html

