This week I worked on the presentation slides, researching amber alert data/statistics, competitors such as Plate Recognizer, and the requirements for our project, as well as adding detail and polish throughout the presentation. After some research into how others have implemented license plate detection, I worked on investigating the feasibility of using YOLOv11 as a base model for license plate detection, since it is popular in the space, and have looked into ways to fine-tune the model for this use case. I have made a Jupyter Notebook file that will tune the model for license plate detection using an open-source dataset I found online, and I have explored ways to have this training run on sites like Google Colab and Kaggle, as well as on the CMU ece machines. Right now I am learning toward using the ece machines due to the strict GPU restrictions with using google colab and kaggle for free. The link to the jupyter notebook is here.
My progress is on schedule. Next week I hope to have completed training on the YOLOv11 nano model on the dataset for around 100 epochs and get some preliminary data on its performance. I would also like to find out how to load the model on a Raspberry Pi and get some metrics on how fast this trained model will run on the device.