This week I worked on deploying the ML models to the raspberry pi. This consisted of setting up the python environment, converting the Jupyter notebook into a standard python file, and setting up the file structure the raspberry pi will use. Since the notebook displays the bounding boxes and images when inferencing, when converting to a python file, I removed this code for faster performance since the end user will not see this anyway. I tested this implementation with a sample image that had two license plates in plain view. This is the same image used when testing the Jupyter notebook in Google colab. The program ran in just over 23 seconds, which should be plenty fast enough for our 40 second timing requirement. The models I used were the NCNN models but no quantization was used, so this number can be easily lowered further if needed. The code can be found here. When setting up the file system, I put the pictures and models into their own folders to easily switch between models and the images I test. Last week I worked on the design report, where I focused on the system implementation as well as the design trade studies.
My progress is on schedule. By next week I hope to finalize the MVP of the dashcam side of things, and shift focus to setting up the cloud