RiseVBT : F4 - Jamshed Panthaki, Jason Botros, Meadow Webster

For coaches & athletes looking to optimize training with objective data & analysis

Automatically store distinct data on each rep in a set	 Lifts: squat, deadlift, bench, overhead press Data: velocity, balance, bar path Recognize training patterns & growth 	
Real-time evaluation with accurate, objective feedback	 Post-lift graphs velocity in 3-axis and orientation Minimal sensor drift over time Synchronized footage displays bar path visual 	
Easy setup	 Discrete, lightweight gear Compatible with commercial barbells 	1
Technical Reqs	 Sensor/video analytics available within 30s Sensor data calibrated within 10% of ground truth Sensor system resistant against 2000N of force Video analysis accurate in 300-500 lux & angles ±15° 	

Solution Approach (previously)

Solution Approach (currently)

Design Changes

- 2 sensors -> 1 sensor
- Adafruit ESP32-S3 TFT Feather
- Cloud server unnecessary

Safety, Health, and Social Influence

- Indicators for good vs. bad
 - Green vs. red
 - Linked to rep
- Optional camera usage

TESTING & VERIFICATION

Data Visualization & Object Tracking

Mock IMU data -> Appropriate graphs

Mock camera footage -> Accurate bar path display

Sensor Calibration & Power Integration

Known data -> Matching sensor readings

Battery powered sensor -> Data stream without loss

Data Integrity over BLE

Sensor data -> Data transmission matches IMU generation

External Start/Stop Command Communication - > ESP32 Acknowledgement & Execution Accordingly in <1s

App & System Integration

Sensor data -> App receives and plots data

Real camera footage -> App displays correct bar path

Data Visualization

Barbell Tracking Validation

- YOLO v2 detection model performed 83% accuracy on test dataset
- Redetection performed during tracking based on calculated confidence levels
- Tested detection and tracking functionality with various aspect ratios, lighting conditions, and recording angles
- Met design requirements of accuracy in 300-500 lux, angles of ±15°

Sensor Calibration & Power Integration

Power

 Validated sensor data stream to device with both USB-C and battery pack

Calibration

- Ground truth: move 1 ft (0.3m) in 0.5s
 - 0.6m/s velocity
 - 0.122g acceleration
 - Freefall: 0.9 m/s, 1g
- Most data within 10% of expectation
- Some data within approximately 15%

Design Tradeoff

• Adjust requirement to within 15%