
Team E6: Study Bearbot

Taylor Kynard and Kayla McFarlane

References

[1] Ali, Al-Sabri Akram, and Xianan Bao. "Design and Research of Infrared Remote Control Based on ESP8266." OALib, vol. 08, no. 04, Scientific Research Publishing, Jan. 2021, pp. 1-14, https://doi.org/10.4236/nalib.1107314_Accessed 3 Feb. 2025

[2] Bart, Mary, "Students Study about 15 Hours a Week, NSSE Finds," Faculty Focus | Higher Ed Teaching & Learning, 17 Nov. 2011,

www.facultyfocus.com/uncategorized/students-study-about-15-hours-a-week-nsse-finds/#:-:text=Findings%20released%20today%20show%20that,study%2015%20hours%20a%20week Accessed 3 Feb 2025

[3] Ricard Franch Argullol, "Analysis of Raspberry Pi PLC pinout time response" Industrial Shields, 13 June 2023

https://www.industrialshields.com/blog/raspberry-pi-for-industry-26/analysis-of-raspberry-pi-plc-pinout-time-response-540

https://nikura.com/blogs/discover/how-many-drops-of-essential-oil-in-a-diffuser#:-text=Most%20diffuser%20models%20can%20run,whole%20of%20your%20sleeping%20period.

Goal:

Make studying a little less stressful and a little more fun — with BearBot!

Use-Case Requirements:

- Response Time ≤
 500 ms [1] [3]
 - Scent Diffusion that lasts for ~ 1 Hour [4]
- Battery Life of 2 Hours [2]
- Easily Portable

<u>Limitations of Bearbot & Safety</u>

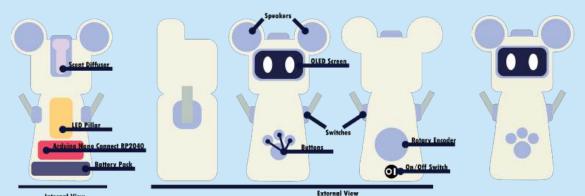
- Can't shake aggressively X
- Liquid is cold & harmless ✓

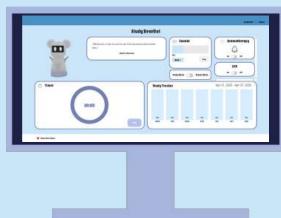
Design Requirements

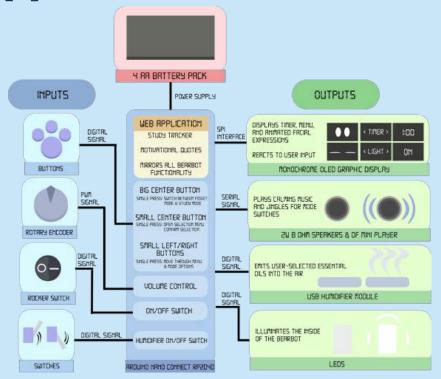
- Arduino Nano Connect RP2040 & OLED
 Graphic Display Module (UR: <= 500 ms)
 - Arduino Nano Connect RP2040 & OLED Specification (SPI)
 - Response time of a few milliseconds
 - SPI ranges from 10MBPs to 20 MBPs
- Bearbot Diffuser Design(UR: 1 Hour Diffusion = 4 Oz)
 - Cylinder is 3cm long & 4 cm radius

 - Can hold up to **5 Oz liquid** \rightarrow **> 1 hour**

 4 AA Battery Pack Holder, Rocker Switch, & Voltage Regulator


(UR: 2 Hours Battery Life)


- \sim 1.5 V AA battery \rightarrow 2000mAh
- (2000mAh * 4 batteries * 6V) = 48Wh
- 48Wh / (5W) = 9.6 hours
- Bearbot Diffuser Design (UR: Safety)
 - Hole for wires at the bottom covered by diffuser
 - Keep components safe in case of spill


Solution Approach

Internal View

Solution Approach

Complete Solution

Physical Study Bearbot

- Hardware Electronic Components
 - Speakers → Music
 - Diffuser → Aromatherapy
 - \circ Rotary Encoder \rightarrow Volume & Fidget
 - Buttons → Navigation & Fidget
 - Motors & Arms →
 Personality/Companionship
 - OLED Screen → Navigation & Personality/Companionship
 - Power Rocker Switch & Battery Pack → Transportability

Hardware Exterior

- o Transparent Plastic
- o Silicone Skin

Study Bearbot Web Application

- User Authentication System
 - Login/Signup Functionality
 - User Data Storage Study session history

Interactive Controls

- Timer Function Pomodoro-style study timer with start/pause/stop capabilities
- o Study Mode Toggle Switch between study and fidget modes
- o Sound Control Selection of ambient sound tracks and volume adjustment
- LED Light Control

Study Analytics

- Weekly Study Tracker Visual representation of study hours per day
- Session History Record of completed study sessions

Connectivity Features

- Real-time Sync Bidirectional communication with physical Bearbot
- Connection Status Indicator

User Experience

- Motivational Quotes Encouraging messages to maintain study motivation
- o Intuitive Interface Clean, minimal design for distraction-free studying

Complete Solution

Study BearBot

Studying is a stress/to/endeavor.

Whether it's for a final exam at university or for a weekly quiz in middle school, everyone needs a short break every now and then.

For those who get stressed out easily and have shorter attention spans, what better way to take your mind off of learning briefly than a friend waiting to comfort you? We aim to create a StudyBuddy robot that serves as an interactive desktop companion designed to

effectate arress while keeping users engaged in their study space.

- reactive sensors · fidget device compunents
- · an option for southing music.
- · and a built-in scent diffuser for light aromatherapy.
- to calm the users nerves without removing them from the studying headspace.

StudyBuddy

Your personalized study companion

Stavy have be account? Size an

Study BearBot

"Wherever a man turns he can find someone who needs

Testing, Verification and Validation

- Conduct Trial Runs with Bearbot for 20 Minutes (10 Participants)
 - Goal: Measure stress relief, ability to focus, & interactivity
 - Pre and Post Study Survey
 - Screen Record Web Application
 - \circ Avg Response > 5 \rightarrow Pass
 - \circ If user receives a positive experience from Bearbot (i.e 7-10 on survey scales) \rightarrow **Pass**
- Conduct Trials on Battery Life (5 Trials)
 - Goal: Measure the lifetime for the Battery
 - For 1 trial, if battery life >= 2 Hours \rightarrow Pass
- Conduct Trials on Diffusion Time (5 Trials)
 - Goal: Measure the lifetime for the Diffuser
 - o For 1 trial, if diffuser life >= 1 Hour → Pass

Testing, Verification and Validation

Battery Tests

Trial	Hour				Hour		
1	5						
2	9						
3	10 7 8						
4							
5							

Average Hours: 7.8 Standard Deviation: 1.9 Passed Use Case Requirement

Notes: First two trials were with rechargeable Amazon Batteries - last three trials were with Duracell Batteries.

Diffuser Tests

Trial	Time			
1	42:25:00			
2	44:25:00			
3	56:40:00 47:28:00			
4				
5	43:40:00			

Average Minutes: 46:55:36 Standard Deviation: 5:45 Refill Rate / 2 Hours: ~2.5 Failed Use Case Requirement

Notes: An additional part was needed for the diffuser that took up some of the area of the hole: another fabrication pass with the CAD

Testing, Verification and Validation

User Study Tests

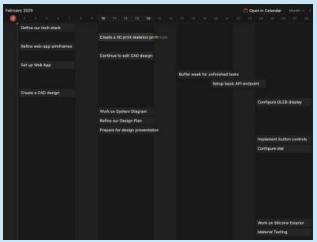
- Participants: CMU students from diverse majors (ECE, MechE, CS, etc.)
- **Context:** Users studied with Bearbot for ~20 minutes in a private study setting.
- **Data Collected:** Pre/post-study surveys + recorded interactions.

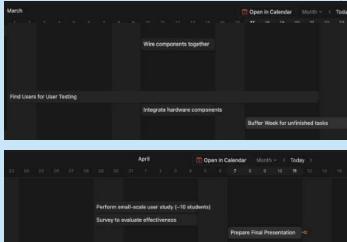
Key Metrics	Before	After
Stress (1=relaxed, 7=stressed)	4.5	3
Focus (1=unfocused, 7=focused)	4.5	5.5
User Comfort	_	~6.33
Would Use Again	_	~6.17

Passed Use Case Requirement

Design Tradeoffs

Diffuser Activated with Switch


- More Powerful with Constant 5V vs Digital Write
- Removed Aroma Option from OLED Screen
 - Fabricated New Part to Cover Diffuser


Removing Rotating Base

- Made Bearbot Less Clunky & Easier to Hold
 - Moved Away from Voice Recognition
- Lost Some Interactivity

Project Management - Schedule

WBS NUMBER			/NER	DUE	PCT OF TASK COMPLETE
1	Deliverables				
1.1	Project Abstract	All	7	1/22/25	100
1.2	Website Initial Setup	All	*	2/1/25	100
1.3	Project Proposal Presentation	All	*	2/3/25	100
1.4	Design Review Presentation	All	¥	2/15/25	100
1.5	Design Review Report	All	•	2/28/25	0
1.6	Ethics Assignment	All	*	3/12/25	0
1.7	Interim Demo	All	*	TBD	٥
1.8	Final Presentation	All	*	TBD	0
1.9	Final Report	All	7	TBD	0
2	Web App Interface				
2.1	Define technology stack	Kayla	¥	2/12/25	100
2.2	Refine web-app wireframes	Kayla	•	2/16/25	100
2.3	Develop web-app backend/frontend	Kayla		3/22/25	0
2.4	Set up basic API endpoint to connect the web app with the robot	Kayla	•	3/8/25	٥
2.5	Implement motivational quotes display	Kayla	*	2/28/25	0
2.6	Implement study tracker functionality	Kayla	×	2/28/25	0
2.7	Implement timer functionality	Kayla	•	2/28/25	0
3	Firmware				
3.1	Configure OLED display (eye/facial expressions, clock, timer)	Kayla	•)	3/15/25	٥
3.2	Configure dial for volume control	Kayla	÷	3/15/25	0
3-3	Implement button controls (modes, timer, scent diffusion)	Kayla	•	3/15/25	0
4	Hardware				
4.1	Create CAD design	Taylor	*	2/16/25	100
4.2	Create a 3D print skeleton prototype	Taylor	≫	2/23/25	50
4-3	Wire components together	Taylor	•	3/12/25	0
4-4	Assemble the robot	Taylor	٠	3/15/25	0
4-5	Work on silicone exterior	Taylor	•	2/28/25	10
4.6	Perform material testing	Taylor	•	2/28/25	0
4.7	Iterate and reprint if necessary	Taylor	*	2/28/25	0
5	Integration				
5.1	Work on system diagram	All	∞	2/22/25	85
5.2	Integrate hardware components	All	*	3/29/25	0
6	User Testing				
6.1	Find users for testing	All	-	3/10/25	0
6.2	Small-scale user study (~10 students)	All	*	4/5/25	0
6.3	Survey to evaluate effectiveness	All	*	4/5/25	0

