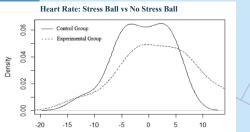

Team E6: Study Bearbot

Taylor Kynard and Kayla McFarlane

Use-Case

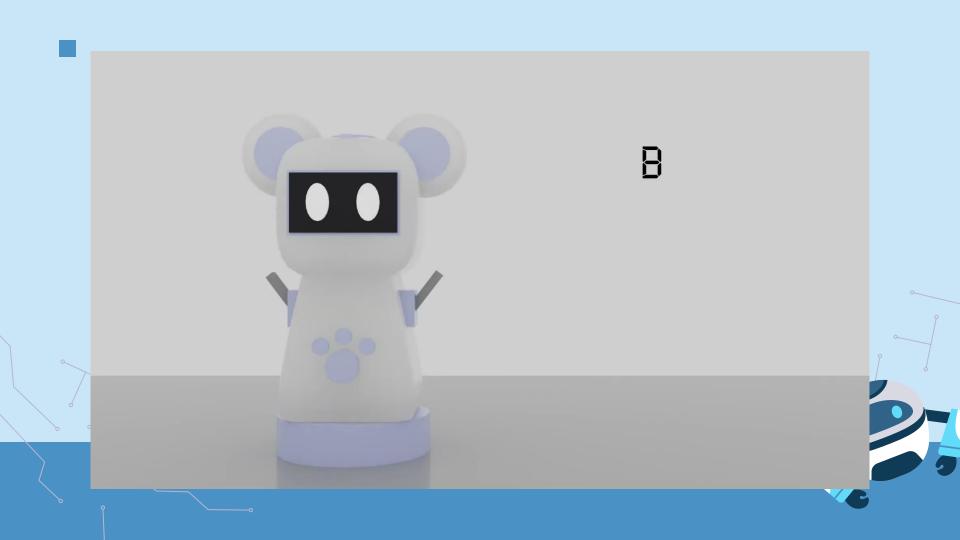
Research


PARO

- Therapeutic robotic seal used to reduce stress and anxiety in patients [1]
- 5 different kinds of sensors for the user to interact with
- Aromatherapy & Stress Balls
 - Calming scents proven to be therapeutic and aid in relaxation
 - In a study, aromatherapy improved sleep quality by **46%** and quality of life by **39.7%** [2]
 - Studies have shown that stress balls helped reduce stress [3]

Goal

- Make Studying a Little Less Stressful and a Little More Fun!
 - A StudyBuddy that serves as an interactive desktop companion
 - Transportable, with multiple features catered to studying
 - Additional fidgeting component
 - Soft and Squeezable
- Target Audience: Teens & Adults
 - Enjoy virtual pets
 - Struggle to stay on task
 - Get stressed easily



References

[1] Rashid NLA, Leow Y, Klainin-Yobas P, Itoh S, Wu VX. The effectiveness of a therapeutic robot, 'Paro', on behavioural and psychological symptoms, medication use, total sleep time and sociability in older adults with dementia: A systematic review and meta-analysis. Int J Nurs Stud. 2023 Sep;145:104530. doi: 10.1016/j.ijnurstu.2023.104530. Epub 2023 May 19. PMID: 37348392.

[2] Tisserand, Hana. "Aromatherapy Blend Inhalation for Better Quality of Life - Tisserand Institute." Tisserand Institute, 9 Apr. 2021, tisserandinstitute.org/learn-more/aromatherapy-blend-better-sleep/.

[3] Alvarez, J. Garcia et al. "Effectiveness of Stress Balls in Reducing the Physiological Symptoms of Stress." (2015).

Use-Case Requirements

- Response Time ≤ 1 Second
 - Most remote controls have a response rate of 100 ms [1]
 - Raspberry Pi can give a reaction time as short as 22 ms [3]
- Scent Diffusion Lasts for ~ 1 Hour
 - An hour of scent diffusion is enough to fill a whole room [4]
 - Minimize refill rate

- Battery Life of 2 Hours
 - The Eilik Robot has a battery life of **1.5** hours
 - On average, full-time college students study 15 hours a week [2] → ~2 hrs/day
- Limitations of Bearbot & Safety
 - Can't shake aggressively X
 - Liquid is cold & harmless

References

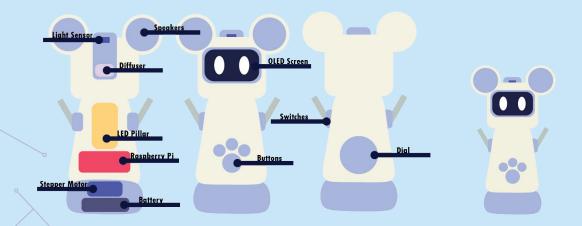
[1] Ali, Al-Sabri Akram, and Xianan Bao. "Design and Research of Infrared Remote Control Based on ESP8266." OALib, vol. 08, no. 04, Scientific Research Publishing, Jan. 2021, pp. 1-14, https://doi.org/10.4236/oalib.1107314. Accessed 3 Feb. 202

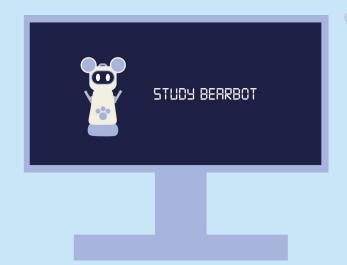
[2] Bart, Mary. "Students Study about 15 Hours a Week, NSSE Finds." Faculty Focus | Higher Ed Teaching & Learning, 17 Nov. 2

www.facultyfocus.com/uncategorized/students-study-about-15-hours-a-week-nsse-finds/#:-text=Findings%20released%20today%20show%20that.study%2015%20hours%20a%20week. Accessed 3 Feb. 20

[3] Ricard Franch Argullol, "Analysis of Raspberry Pi PLC pinout time response" Industrial Shields, 13 June 202

 $\underline{https://www.industrialshields.com/blog/raspberry-pi-for-industry-26/analysis-of-raspberry-pi-plc-pinout-time-response-5-26/analysis-of-raspberry-pi-plc-pi-plc-pi-plc-pi-plc-pi-plc-pi-plc-pi-plc-pi-plc-pi-plc-pi-plc-pi-plc-pi-plc-pi-plc-pi-plc-pi-plc-pi-plc-pi-plc-pi-plc-pi-plc-pi-p$


[4] Laura Garvin Gomez, "How many Drops of Essential Oil in a Diffuser" Nikura, 26 Feb, 20


Technical Challenges

- Silicone Cover & Stress Ball Material
 - User must be able to feel and squeeze
 a comfortable exterior
 - User must be able to see the light from inside the bearbot
- Touch Sensor Placement & Interactivity
 - User must be able to have interactivity with the bearbot

- Syncing
 - User must be able to interact with the bearbot in a quick manner (in all 3 modes: physical buttons, web-app buttons, voice-control)
- Web App Interface
 - User must be able to find interface intuitive and simple to use

Solution Approach

Solution Approach - In Detail

Hardware

Inputs:

Buttons Switches Microphone Dial Light Sensor Touch Sensor

Firmware

Outputs:

OLed Screen Stepper Motor Leds Speakers Scent Diffuser

Software

- · Voice-controlled commands
- Web App Interface (Possibly)
- Study Timer (Robot displays time)
- Another mode for controlling the robot (i.e turning on/off sound, scent diffusion, etc)
- Fidget mode
 - On: buttons and switches are inactive
 - Off: buttons and switches are active

Raspberry PI

Buttons

- Giant Button switches between fidget mode and study mode
- · Smaller three buttons:
- o left button: decrease
- o right button: increase
- o middle: selects option

Microphone

- Used for user-controlled voice-commands
- If the user says "bearbot", it will turn towards the user.

Switches

- non-dependent on user input
- "arms" of the bear go up when the timer is up, down other.

Stepper Motor

 lets the robot rotate around (180 degrees)

LEDs

- Illuminates the inside of the robot
- (Thinking of using CoD LED)

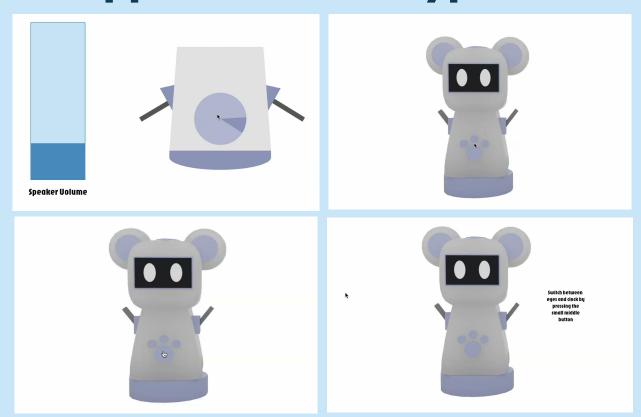
Dial

- Controls speaker volume (if !fidget_mode)
- Acts as a fidget component (if fidget_mode)

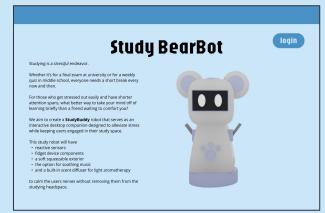
Speaker

- Plays calming sounds
- reacts to timer and mode switches

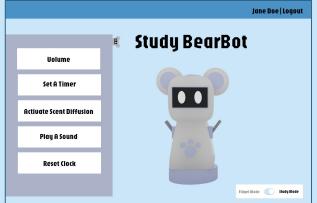
OLED Screen


- reacts to user inputs
- used for timer, clock, and eyes
- would show the different faces the studybearbot would make. Reactive to touch on its body. Maybe sleepy eyes if it's dark, smiling eyes, etc

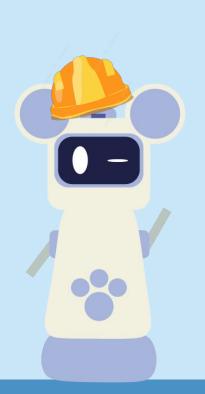
Touch Sensor


 Used for turning on the light inside

Solution Approach - Prototype Demos

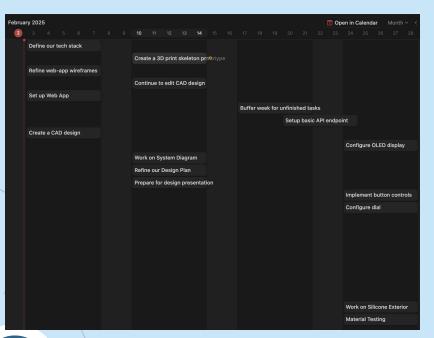


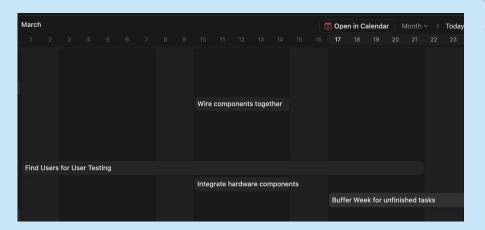
Solution Approach - Web App Wireframes

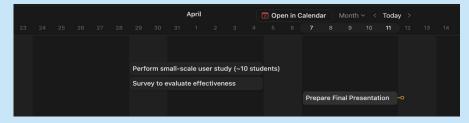


Testing, Verification and Metrics Conduct a Survey with 5-10 Students for 1 Hour

Questions on a Scale of 1 - 10


- Measure stress relief
- Measure ability to focus on the task at hand
- Measure enjoyment
- Take a Video Recording of the Study Session
 - Measure amount of times interacted with Bearbot
 - Measure reaction time of Bearbot




Tasks and Division of

Ī	Category	Tasks	Assigned To
	Software	 Define our technology stack Refine web-app wireframes Develop web-app backend/frontend Have basic API endpoint setup to connect the web app with the robot 	Kayla
	Firmware	 Configure OLED display (eye/facial expressions, clock, timer) Configure dial for volume control Implement button controls (modes, timer, scent diffusion) 	Kayla
		Integrate hardware components	Kayla & Taylor
	Hardware	 Create CAD design Create a 3D print skeleton prototype Wire components together Assemble the Robot Work on Silicone Exterior Material Testing Go back and make some changes if needed & reprint 	Taylor
	User Testing	Small-scale user study (~10 students) Survey to evaluate effectiveness	Kayla & Taylor

Schedule

