
GateGuide
E4: Opalina Khanna, Krrish Jain, Daniel Kim

18-500 Capstone Design, Spring 2025
Electrical and Computer Engineering Department

Carnegie Mellon University

System Architecture

Product Pitch

GateGuide is an indoor navigation system, tailored specifically to help visually
impaired people find their way through airports. GateGuide attempts to make
unfamiliar environments more accessible through real-time sign detection,
interpretation, and auditory feedback. The device aims to provide a seamless
experience from security to the user’s gate, and ensure complete independence in an
otherwise daunting setting.

Through this project, we aimed to create an accurate, fast, portable, and power
efficient system to maximize its impact on our intended demographic. Test results
indicated that most of these requirements that we initially outlines were fulfilled,
with the exception of certain compromises and tradeoffs (as outlined in detail
below) made to preserve latency and prioritize usability of the product.

❖ Software Components
• VOSK speech-to-text to interpret the user’s destination gate
• A custom trained YOLOv8 model for capturing and interpreting common

airport signage. Specifically trained to extract arrows, bathrooms, gate /
airplane signs, and handicapped symbols

• An open-source rapid Optical Character Recognition (OCR) model, to
extract gate ranges associated with signage and guide the user accordingly

• Pyttx3 text-to-speech to output auditory feedback to guide the user once the
directions have been processed

❖ Hardware Components
• Raspberry Pi 5 + AI HAT+ – 2.4 GHz quad-core processor with Hailo-8L

accelerator for <2s latency for inference
• 2× Raspberry Pi Camera Module 3 – Sony IMX708 sensors on a 60 mm

stereo baseline. Images from Left and Right cameras are rectified.
Semi-global block matching (SGBM) is performed on the rectified image to
get a disparity map. Depth is calculated using disparity and the baseline.

• USB headset – combined microphone and headphones for STT/TTS I/O
• 10 000 mAh power bank – 5V output, ~5 h runtime at ≈10 W draw (≈250 g)
• 3D-printed PLA enclosure + electronics – housing, PCBs, mounts &

cabling all in ≤150 g package

System Description

System Evaluation

Conclusions & Additional Information

Check out our
website!

Dual Cameras

Belt
Raspberry Pi Case

CAD Model for Wearable Device

Testing Approach
• Signage: The ML models used to

interpret signage were tested both
manually and using existing datasets
of images found online. The reported
accuracy is a combination of the
results obtained (about 200 instances).

• User Interface: The UI was tested
completely manually, by each of our
team members individually, and were
also user tested on a group of 5 people
(about 100 total trials).

• Hardware: The power testing was
done by using the device until the
battery was exhausted (3 trials).

Design Trade-Offs

This product employs technology that is widely applicable to
purposes beyond our use case, including but not limited to
language aid for non-native speakers. Furthermore, if we were to
continue this project, we would expand the navigation
capabilities to other modes of transport, including train stations,
subways, etc. Overall, this project formed a foundation for us to
dive deeper into the tools we used, and understand how
individual software and hardware components integrate into a
larger, more complex system.

Metric Target Actual

Signage
Accuracy

90% 80%

Gate Text
Accuracy

95% 90%

End-to-End
Latency

<2s 1s

Battery Life 5hr 4.5hr

Weight <2kg 400g

Use-Case Requirements
Software Block Diagram

Hardware Block Diagram

3D Printed Case

Chosen Solution Alternative (Not Used)

Raspberry Pi 5
• 10–12 W draw vs
• ~100g

Jetson Nano
• Dedicated GPU but
25W draw
• ~300g

2× Pi Camera Module 3
• Worse Accuracy
• Native CSI encoding →
60 FPS capture

eYs3D Depth Camera
• True IR-TOF depth,
better accuracy
• USB interface limits to
10–12 FPS, higher
latency

YOLOv8n (Nano)
• 80% accuracy @ <1 s
latency → meets our ≤2 s
target

YOLOv8 (Full)
• 90% accuracy but >2s
latency → fails latency
requirement

RapidOCR (Every 10
Frames)
• 90% accuracy - 10fps

EasyOCR (Every
Frame)
• 95% accuracy - 3fps

Problem Outcome / Solution

Running CNN-based
networks on the Pi was
very slow (No dedicated
GPU)

• Frame interval for
OCR
• Reduced video
resolution
• Multi-threading

Handling real-time audio
and video input while
offline (no Wi-Fi
dependence)

• Quantized models
• Offline TTS and STT

Compatibility issues
while compiling custom
models on Hailo-8 NPU

• Compromised
accuracy and latency

Technical Challenges

