
18-500 Design Review Report - 28 February 2025 Page 1 of 12

SortBot
Authors: Teddy Lin, Ethan Lu, and Alejandro Miranda

Affiliation: Electrical and Computer Engineering, Carnegie Mellon University

Abstract—A system capable of sorting trash within
trash processing facilities. Our system is a robotic
gantry that moves along the x, y, and z-axis to pick
up trash, using a vacuum-based end effector to pick up
the trash, identify it using computer vision, and place
it into its corresponding bin. Additionally, our system
will provide a sorting accuracy of 90% via autonomous
means.

Index Terms—Gantry, YOLO, Vacuum, Web App,
OBB, Computer Vision, Trash, Recycling

1 INTRODUCTION

Current trash sorting solutions are ineffective in sort-
ing all of different types of trash without the involvement
of manual human sorting. In providing a more cost ef-
fective and efficient solution, we have designed SortBot, a
trash sorting robot that aims to eliminate the need to man-
ual human sorting. Trash processing facilities usually have
many people working at a conveyor belt to sort the trash.

It is important that our project exist, since it provides
a solution to the amount of waste that gets passed through
waste sorting facilities every day. The need for properly
sorting trash types is essential to the maintenance of our
planet. There are 2.12 billion tons of waste produced each
year across the world [1].

Trash processing facilities are the main users of our
technology as they need this system to enhance their trash
sorting capabilities. Currently, trash processing facilities
employ human workers that have to stand by the conveyor
belts and manually sort the trash using their hands. Our
robot will operate above the conveyor belt and do the same
task as the human workers do, but now autonomously.

Some competing technologies utilize robotic arms to
sort the trash on conveyor belts into the appropriate bins.
Despite the dexterity of a robotic arm with a gripper type
end effector, our solution provides a simpler approach,
which reduces the cost of the product significantly. An-
other competing technology is that of ZenRobotics, a com-
pany that employs the use of a gripper type end effector on
a gantry type system like that of ours. It also suffers from
the complexity in that our suction/vacuum based approach
to picking up trash with our end effector limits the number
of moving parts and makes our robot more versatiles in be-
ing able to manipulate a wide array of trash. The gripper
is limited in the types of objects it can manipulate as the
objects must be of a certain size.

Our goals in implementing this system are to provide
an autonomous and seamless trash sorting experience over
conveyor belts for trash processing facilities. We also in-

tend on achieving a sorting accuracy of 90%, making our
project comparable to that of the human manual laborers
and potentially superior to them. With SortBot, we aim to
create a cleaner and more eco friendly society.

2 USE-CASE REQUIREMENTS

The use-case requirements for our project can be di-
vided into three major components, each crucial to our
project’s overall success.

2.1 Reliable Sorting

Overall, after the object is identified, the entire system
should take no less than 8 seconds to sort the object into
the correct bin. The end effector should be able to both
pick up and release objects at the correct times with 95%
accuracy. Our system will use a suction cup to pick up
items that will be lowered and raised so that objects that
are adjacent to each other (but not overlapping) can be
sorted without issue. The end-effector should be able to
deal with common recyclable items. This means it should
exert a force strong enough to lift objects weighing up to 1
lbs, and should be able to handle objects that range from
1 in in their shortest dimension to objects that are 8 in
in their longest dimension. Additionally, the end-effector
must be able to deal with objects that have a wide variety
of surfaces, such as smooth, porous, or rough surfaces.

2.2 Real-time Monitoring

As for the monitoring aspect of the system, we want to
provide a live stream through a web application. This web
application will provide some form of real-time monitoring
through bounding box drawing on detected objects. The
bounding box will appear in four different colors depend on
their trash type: red for plastic, green for waste, blue for
metal, and yellow for glass. These visual updates will hap-
pen within 50 ms the bounding box metadata. Moreover,
this live stream will have a resolution of 720 x 720 pixels
and have a frame rate of 30 fps to ensure a good viewing
experience on most laptops.

2.3 Real-time Object Detection

The system is designed to provide continuous real-time
object detection for objects moving slowly down a conveyor
belt. Since waste management facilities are chaotic, our
system must support multi-object detection with up to 10
items per image. In addition, the system must be able to
detect these objects within 150 ms of them appear in the

18-500 Design Review Report - 28 February 2025 Page 2 of 12

camera feed, that way the system can actually determine
the object’s location regardless of how fast the conveyor
belt is moving. The detection will be ensure the corre-
sponding bounding box per each object successful lands on
the object with a tight fit.

3 ARCHITECTURE AND/OR
PRINCIPLE OF OPERATION

As you can see in Fig.[1], we use the eYs 3D stereo cam-
era to capture both RGB images of the objects on the con-
veyor belt as well as their heights. The RGB image will be
sent to a bounding box classification model to identify the
objects and provide their location. This information, along
with the heights of the objects, will be sent serially as xyz
coordinates to an Arduino. This Arduino will then control
a robotic gantry to move over to the objects, pick them up,
and place them into the correct bins. The end-effector of
this gantry will use a suction-cup shaped end effector that
will pull a vaccum to pick up objects via a vacuum pump.
The video, as well as the objects and their bounding boxes,
will be sent to a web app for users to monitor the robot’s
operation.

4 DESIGN REQUIREMENTS

Each of our three primary use-case requirements can
be translated into multiple design requirements to support
them. In this section we will break them down by use-case
requirement.

4.1 Reliable Sorting

For our requirement The system must be able to pick
up and move the objects to the correct location reliably and
within an acceptable time frame. After the model has iden-
tified the centroid, the time that the gantry takes to sort an
item should be no more than 8 seconds. Ideally, the gantry
should take 2 seconds maximum to move to the centroid,
4 seconds to pick it up, and 2 seconds to move the object
above the correct bin and drop it. In order to achieve this,
the x-y movement of the system should be able to move at
around a rate of 1.5 ft/s, and the z-axis movement should
be able to reach speeds of around 1 ft/s. Additionally, in
order to ensure that the robot can move to the correct lo-
cation to pick up the object, the gantry should be able to
move in 0.2 mm increments on the x-y axes and in 1 mm
increments in the z axis. In order to manipulate items as
small as 1in, the diameter of the suction cup should be no
larger than 1in. Additionally, the vacuum pump should be
able to hold a vacuum of at least 1 lb, and evacuate air
quickly enough in order to lift objects that have a porous
or rough surface.

4.2 Real-time Monitoring

For our requirement of having real-time monitoring, we
are able to derive some more design requirements. In order
to achieve a 50 ms second each component: Jetson Orin
Nano data processing, network transmission, and broswer
rendering must add up to less than 50 ms. The Jetson Orin
Nano should take no more than 20 ms, he network trans-
mission should take no more than 10 ms, and finally the
browser rendering should take no more than 15 ms. To-
gether this all adds up to 45 ms. When testing the network
speed on the CMU-SECURE network, we achieved a 83.2
Mbps upload speed, with a raw data rate of:

720× 720× 3 bytes× 30 fps = 46.66 MB/s

If we were to use H.264 compressiion, we can achieve a
sufficient bit rate of:

720× 720× 0.1 bytes× 30 fps = 4.70 MB/s

This leaves us well below the 83.2 Mbps available upload
bandwidth: the bandwidth utilization is 4.7/83.2 = 5.65

4.3 Real-time Object Detection

For our requirement of having real-time object detec-
tion, we are able to derive some more design requirements.
We want the system to consistently identify objects of the
same type in the same way, to minimize false positives,
thereby reducing waste contamination. We are requiring a
precision of 0.70 for this. Moreover, the identified bound-
ing boxes must be lie up properly with their ground truths,
in order for the gantry to pick the object. A mIoU of 0.95
would allow the gantry to be within ± 5 pixels of the true
bounding box centroid.

5 DESIGN TRADE STUDIES

5.1 Mechanical Movement

In order to physically manipulate the objects in 3D
space, there needs to be a mechanical system that can move
the objects from the conveyor belt to the bins.

5.1.1 Articulated Robotic Arm

Initially, we considered using an articulated robotic arm
to pick and place objects. These arms are often used in
production lines as they are able to move with 6+ DoF,
meaning that they can also control the orientation of their
end-effector as well as its position. However, these systems
are often costly, since they require motors and parts that
are able to withstand high torques and jerks. Additionally,
these arms are restricted by their joint limits, and require
the use of inverse kinematics in order to move from one
place to another. This means that moving between cer-
tain configurations will require additional time as it moves
to more suitable configurations, or else the movement be-
comes impossible.

18-500 Design Review Report - 28 February 2025 Page 3 of 12

Figure 1: System Architecture

Figure 2: Rough Sketch of System

18-500 Design Review Report - 28 February 2025 Page 4 of 12

5.1.2 End-of-Conveyor Ramp

One potential way of sorting the objects into the cor-
rect bins is to put a moving ramp which is able to adjust
itself such that it guides objects that fall onto it into the
correct bin. This implementation is able to deal with heavy
objects, since it doesn’t need to lift anything off of the con-
veyor belt, and instead uses the force of gravity to move
objects into their respective bins. However, one downside
to this implementation is that it doesn’t work with objects
that are next to each other, as they will fall onto the ramp
at the same time, so the ramp is forced to sort two poten-
tially different types of trash into the same bin.

5.1.3 3-Axis Gantry

A robotic gantry (otherwise known as a Cartesian Coor-
dinate or Linear robot) which controls its motion through
linear motion in each respective axis. These types of robots
are used in a wide variety of applications, such as pick-and-
place, welding, plotting, and 3D printing. They are highly
precise, and since the movement in each direction is lin-
ear, they are able to move to any location that falls within
the extremes of each linear motion (which ends up being
a rectangular prism). This type of motion is also much
simpler, and does not require the use of inverse kinematics.
Although these robots only have 3 DoF (x,y,z), it is enough
for our application, since the robot only has to move the
end-effector down on top of the objects without any rota-
tion.

5.2 Web Application Architecture

In order to stream video with sufficient frames per sec-
ond, delay, and resolution, the web application must pro-
vide a software architecture framework suitable for video
streaming.

5.2.1 Django

Django is a Python web application framework. Ini-
tially, we considered using the Django web framework for
creating the web app and streaming the video. Despite it
having various tools useful for account management pur-
poses such as in the case of a social media application,
it fails to serve for a mainly streaming application. It
has higher than average memory usage per connection.
Nonetheless, it is less optimized for real-time streaming
workloads which is the main purpose of our application
on the web.

5.2.2 Node.js

Node.js is a JavaScript web app framework. It has
some oustanding advantages in that it has non-blocking
I/O, which allows for multiple concurrent connections with
a minizmied overhead. This makes it ideal for streaming
applications. It is memory efficient, since it uses less RAM
than average per connection in comparison to thread-based

frameworks. It has low latency as it minimizes the de-
lay between server processing and client delivery. Finally,
it is optimized for streaming as it has native stream API
built into the core of the platform. Despite it not having
as good account management properties, it provides more
than enough in terms of the streaming capabilities that we
will be utilizing.

5.3 Deep Learning Model Architecture Se-
lection

Object detection models are categorized into two types:
one-stage and two-stage, based on their approach to the de-
tection pipeline. One-stage models treat object detection
as a single unified task, meaning that they predict bound-
ing boxes and class probabilities as a single unified task.
On the other hand, two-stage models first generate a set of
region proposals during the first stage and then during the
second stage the model will refine these proposals by clas-
sifying the objects and fine-tuning the predicted bounding
boxes. While two-stage models tend to be more precise
due to their more thorough approach, they are generally
much slower and require significantly more computational
resources than their counterpart. One-stage models fit our
use-case much more as we are willing to sacrifice a bit of
precision for a faster inference.

5.3.1 Single Shot Multibox Detector

The Single Shot Multibox Detector (SSD) is an ap-
proach proposed by Wei et al. [2] in 2016 during his time
as a Ph.D. student at the University of North Carolina at
Chapel Hill. SSD discretizes the output space of bound-
ing boxes into a set of default bounding boxes over dif-
ferent aspect ratios and scales per feature map location.
At prediction time, the network generates scores for the
presence of each object category in each default box and
produces adjustments to the box to better match the ob-
ject shape. The refinement process is contingent upon the
predefined default bounding boxes at each feature map lo-
cation. While this approach may be effective for many
scenarios, it can become a problem when objects appear
in unusual sizes, orientations, and locations. Since the re-
finement process uses a naive approach of using predicted
offsets in xy position and width and height values to adjust
the default bounding boxes, it is possible that SSD can still
fail to properly detect objects in the previously mentioned
scenarios. Without guarantees on object size, orientation,
and location, SSD is not the right approach for this prob-
lem.

5.3.2 EfficientDet

The EfficientDet architecture is a family of object de-
tectors proposed by Tan et al. [3] in 2019 during his time
on the Google Deep Brain team. As opposed to previous
state of the art approaches, EfficientDet introduces a new

18-500 Design Review Report - 28 February 2025 Page 5 of 12

Table 1: YOLO vs EfficientDet

Model mAP val CPU ONNX (ms) T4 TensorRT10 (ms) Parameters (M) FLOPS (B)
EfficientDet-d0 34.6 10.2 3.92 3.9 2.54
EfficientDet-d1 40.5 13.5 7.31 6.6 6.1
EfficientDet-d2 43.0 17.7 10.92 8.1 11.0
EfficientDet-d3 47.5 28.0 19.59 12.0 24.9
EfficientDet-d4 49.7 42.8 33.55 20.7 55.2
EfficientDet-d5 51.5 72.5 67.86 33.7 130.0
EfficientDet-d6 52.6 92.8 89.29 51.9 226.0
EfficientDet-d7 53.7 122.0 128.07 51.9 325.0

YOLOv8n 37.3 80.4 1.47 3.2 8.7
YOLOv8s 44.9 128.4 2.66 11.2 28.6
YOLOv8m 50.2 234.7 5.86 25.9 78.9
YOLOv8l 52.9 375.2 9.06 43.7 165.2
YOLOv8x 53.9 479.1 14.37 68.2 257.8

Note: These numbers are from running inference on a 640 x 640 pixel image.

type of feature extractor, the a weighted bi-directional fea-
ture pyramid network, for fast multiscale feature fusion,
and a compound scaling method that uniformly scales the
resolution, depth, and width for all backbone, feature net-
works, and box/class prediction networks all at the same
time. While EfficientDet takes a more thorough approach
to bounding box localization, by using repeated top-down
and bottom-up feature fusion, this level of refinement is
excessive for our purposes. Since we are allowing a mar-
gin of error of ±5 pixels for computed bounding box cen-
troids, dedicating computational resources for finer local-
ization would introduce unnecessary overhead, and would
ultimately degrade real-time performance. The additional
computational resources needed to take full advantage of
the EfficientDet architecture is not justified in our use case,
where it is acceptable to sacrifice some precision in bound-
ing box localization if it can lead to significant improve-
ments to real-time performance.

5.3.3 You Only Look Once

The You Only Look Once (YOLO) architecture is a
family of object detectors proposed by Redmon et al. [4]
in 2016 during his time as a Ph.D. student at the Uni-
versity of Washington. As opposed to previous state of
the art approaches, YOLO frames object detection as a re-
gression problem to spatially separate bounding boxes and
associated class probabilities. As opposed to other state of
the art approaches, YOLO uses a single network to predict
bounding boxes and class probabilities. Since the whole
detection pipeline fits inside of a single network, YOLO
has been optimized end-to-end directly for detection per-
formance. YOLO’s appeal comes from its comparable per-
formance to other state of the art approaches despite using
a fewer number of parameters. The following Performance
Comparison Table 1 between the YOLO architecture and
the EfficientDet architecture clearly illustrates this fact. A
YOLOv8n model with 3.2M parameter has a greater mAP-
VAL on COCO [5], a common object detection benchmark,

and faster inference speed on a T4 TensorRT10 (which we
can extrapolate to our GPU-based hardware) than its 3.9M
parameter EfficientDet counterpart, EfficientDet-d0. This
trend continues for YOLO sizes and their EfficientDet coun-
terparts. The strong real-time performance without loss of
precision is what makes YOLO very attractive to us.

5.4 Deep Learning Model Classification
Head Selection

Object detection is a task in deep computer vision that
involves identifying the location and the class of objects
in an image or video stream. Objects that are found are
given a bounding box, typically represented with an xy co-
ordinate that represents the center of the detected object
and a width and height value that is used to indicate the
size of the object. These values are inferred from the last
layer of object detection models, which is referred to as the
classification head. The effectiveness of an object detection
model heavily depends on its classification head. In order
to select a classification head that we can trust to meet our
performance requirements we will need to inspect how each
type of bounding box will be visualized on static images.

5.4.1 Axis-Aligned Bounding Box Prediction

Object detection models trained for axis-aligned bound-
ing box prediction infer a detected object’s location using
the (x, y, w, h) format where x and y are the predicted co-
ordinates for the center of the bounding box and w and h
are predicted width and height respectively. As illustrated
in Fig. 3, we can see that axis-aligned bounding boxes are
not very space-efficient, resulting in a less accurate repre-
sentation of an object’s true shape and location.

5.4.2 Oriented Bounding Box Prediction

Object detection models trained for oriented bounding
box prediction infer a detected object’s location using the

18-500 Design Review Report - 28 February 2025 Page 6 of 12

(x, y, w, h, θ) format where x, y, w, and h represent the
same values as above, and θ is the angle of rotation. As
illustrated in Fig. 3, we can see that oriented bounding
boxes provide a much tighter fit. Moreover, we can see that
the calculated bounding box centroid lies closer to the true
centroid than the axis-aligned bounding box equivalent.

5.5 Central Computing Platform

Being able to achieve on-device deep learning is a key
component in being able to achieve our design requirements
as local compute not only minimizes the number of exter-
nal data transfers which will reduce overall latency, but
can also provide the necessary control to perform further
on-device optimizations.

5.5.1 Nvidia Jetson Nano

The Jetson Nano is a mid-range mobile graphics chip
that was released by Nvidia in 2019. Built on the 20
nm process and based on the TM660M-A2 variant of the
GM20B graphics processor, the Jetson Nano offers a strong
computational power relative to its cost of $99. The Jetson
Nano offers an AI performance of 472 GFLOPS and a GPU
and CPU max frequency of 921 MHz and 1.42 MHz respec-
tively. These specifications will not be sufficient enough to
run modern deep computer vision models which typically
require a GPU frequency of 1 GHz.

5.5.2 Nvidia TX2 Jetson

The Jetson TX2 is one of the direct successors to the
Jetson Nano. Jetson TX2 can deliver up to 2.5x the per-
formance of the Jetson Nano offering the AI performance
1.33 TFLOPS and a GPU and CPU max frequency of 1.3
GHz and 2.2 GHz respectively. Despite having attractive
properties in terms of raw throughput, the Jetson TX2 suf-
fers when it comes to its memory constraints. The Jetson
TX2 only has 8GB of LPDDR4 RAM which is unideal in
our use cae. Large models and high-resolution inputs will
create memory bottlenecks which will lead to slower per-
formance than advertised.

5.5.3 Nvidia Orin Jetson Nano

The Orin Jetson Nano is one of the more modern graph-
ics chips that has come out from Nvidia. Released in
2023, the Orin Jetson Nano offers a promising 67 TOPS
and a GPU and CPU max frequency of 1.2 MHz and 1.7
GHz. Unlike its older counterparts the Orin Jetson Nano
uses 8 GB 128-bits LPDDR5. Compared to the LPDDR4,
LPDDR5 has a high data transfer rate boosting a max-
imum bandwidth of 6400 Mbps which is nearly 1.5 times
faster than the LPDDR4’s 4266 Mbps. These specifications
combined with the fast data transfer rates makes the Orin
Jetson Nano very attractive for our use case.

6 SYSTEM IMPLEMENTATION

6.1 3-Axis Gantry

6.1.1 XY movement

For the xy movement of the gantry (parallel to the plane
of the surface of the conveyor belt), we based our design on
the 4xiDraw, a robot made to plot svg images onto physi-
cal paper. This design involves two perpendicular pairs of
rods joined by a sliding clamp which slides across the rods
in both directions to allow for movement. The movement
is driven by a singular belt, powered by two stepper motors
(one for each direction).

6.1.2 Z movement

The z-axis movement (perpendicular to the conveyor
belt’s surface) will be controlled by another stepper mo-
tor which drives a rack-and-pinion gear system. This will
be mounted on the ends of the free moving rods in the
4xiDraw, in place of the drawing tool in 4xiDraw’s original
design.

6.1.3 End Effector

The end-effector, which allows the robot to hold ob-
jects while they are being moved, will be a small suction
cup attached to a 12 V vacuum pump. The idea is that
the suction cup will be pressed onto the surface of a trash,
and the vacuum pump will pull a vacuum inside the cup
to maintain the grip. This end-effector will be mounted
onto the end of the rack gear, so that it can be lowered and
raised.

6.1.4 Arduino Control

The stepper motors vacuum pump for the gantry and
conveyor belt will be controlled by an Arduino Mega 2560.
The Arduino will be connected to a stepper motor con-
troller board (CNCShield) to control the stepper motors.
Since the linear motion is controlled by belts, we can trans-
late translational movement into the number of steps that
the motors have to turn:

num steps =
linear distance

π ∗ pitch diameter
∗ (steps

revolution
)

Since the conveyor belt is moving at a constant speed, and
we have the timestamp of when the object is detected, the
Arduino will be able to calculate where the gantry should
move to pick up the moving object. When the gantry
has moved to the correct position above the object, the
end-effector will be lowered until the suction cup is firmly
planted onto the object’s surface. The Arduino will then
send a signal through a relay in order to activate the 12V
vacuum pump, which will pull a constant vacuum to keep
the object secured. The Arduino will then move the gantry
over to the correct bin (which has a predetermined loca-
tion), and send the signal to the relay to stop pulling the
vacuum, which will then allow the object to release.

18-500 Design Review Report - 28 February 2025 Page 7 of 12

Figure 3: Axis-aligned Bounding Box vs Oriented Bounding Box

Table 2: Central Computing Platform Comparison

Jetson Orin Nano TX2 Jetson Jetson Nano
AI Performance 67 TOPS 1.33 TFLOPS 472 GFLOPS

GPU Max Frequency 1.02 MHz 1.3 GHz 921 MHz
CPU Max Frequency 1.7 GHz 2 GHz 1.43 GHz

18-500 Design Review Report - 28 February 2025 Page 8 of 12

6.1.5 Jetson-Arduino Communication

The Jetson Orin Nano will be connected to the Arduino
via a USB-A to USB-B cable, and will send information se-
rially. When the centroid of an object is determined, it
will be placed on a buffer. When the Arduino indicates via
serial communication that it is ready to pick up an object,
the Jetson Orin Nano will send a pair of x, y, z coordinates
to the Arduino, along with a timestamp of when the object
was detected.

6.2 Web Application

6.2.1 Web Socket Communication

For the web application’s architecture, data will be com-
municated through a web socket connection between the
Jetson Orin Nano and a designated PC. The PC will instan-
tiate a web socket connection by running a server script.
Then, the Jetson Orin Nano will connect to the PC with
a client script that has the IP address of designated PC.
With both the PC and the Jetson Orin Nano connected to
the sameWi-Fi network, a successful web socket connection
can be established. The PC will utilize a Node.js interface
for handling the server setup and process management.

6.2.2 Information Displayed

As for the frontend visual component of the web appli-
cation, the server code that instantiates the web socket, will
also instantiate the HTML file that is written for generating
the HTML. The code for handling the receiving and pro-
cessing of the data from the web socket connection will be
written in JavaScript. This information includes the video
frames, as well as classified objects, and their bounding box
coordinates/precision metrics. The interface will then draw
on top of the video feed to show the bounding boxes and
the objects’ classification. The app will also keep track of
the history of the quantity of objects sorted for each cat-
egory. Finally, a short summary of the recycling rules of
California being followed will be included at the bottom
of the monitoring page or on a separate page. These rules
will provide the user with an idea of the recycling protocols
being followed by our robotic system.

6.3 Deep Learning Model

6.3.1 Pipeline

RGB images from the eYs 3D stereo camera will un-
dergo a bit of feature engineering right before being feed
to the model. In particular, we are going to normalize the
image on along in each RGB channel respectively using the
mean and standard deviation of each RGB channel from
the train dataset. This hopefully helps the model gener-
alize better on the real-world images. The specific model
we plan to implement is a YOLOv8 OBB model, so we can
take advantage of the efficient inference speed of the YOLO
architecture and the tight bounding box fit from the OBB
classification head.

6.3.2 Training

Once the deep learning pipeline has been implemented,
we can then transition into training the model for a suffi-
cient amount epochs. Before, we can train the model on
our trash dataset [6], we first to need to do a bit of image
preprocessing. Out the box, the images in the dataset come
from a variety of background, we plan to standardize the
background such that all images “laying” on the same color
background as the conveyor belt. This can easily be done
since the dataset also comes with the polygon bounding
box as well. We plan to start training with an initial learn-
ing rate of η = 0.001 toensure stable training and to avoid
overly large updates that may force us out of a global mini-
mum. Moreover, we plan to use the AdamW optimizer and
the ReduceLROnPlateau learning rate scheduler to help
easy our convergence. The combined decoupled weight de-
cay in addition to reducing the learning rate only when val-
idation precision decreases will support the model’s ability
to generalize especially on real-world objects. We plan to
train on Google Colab T4’s using the $300 free credits pro-
vided to new users (3× $300 hours = $900 hours to train).

7 TEST & VALIDATION

7.1 Test for Reliable Sorting

In order to ensure that the gantry system can reliable
pick up and drop off from their location on the conveyor
belt to their correct bin, we plan to measure things: (i)
the performance of the z-axis end-effector and (ii) the real-
world precision of the programmable movement.

7.1.1 Z-Axis End-Effector

To analyze the performance of the z-axis end-effector,
we will create our own assortment of trash objects and re-
cyclables that the z-axis end-effector will pick up and move.
For this custom assortment, we plan to use items of vari-
ous shapes, sizes, weights, and textures to ensure the end-
effector generalizability for real-world trash. We also plan
to run multiple trials per object, making sure to place them
at different orientations to ensure that the system is ade-
quately robust.

7.1.2 Precision of Real-World Movement

Since, we are translating code to real-world movement,
we need to ensure the movement of the gantry system meets
our previously requirements. We plan to test this by mark-
ing static locations on the conveyor belt and programming
the gantry to move to those location. Once the gantry
stops we will then measure the distance from where the
gantry stopped to the desired location. We plan to run
multiple trials of this, each where the gantry system starts
at a different origin location.

18-500 Design Review Report - 28 February 2025 Page 9 of 12

Figure 4: Design Rendering

7.2 Test for Real-time Monitoring

In order to ensure that our web application meets our
requirements, we plan to measure two things: (i) latency
between messages and (ii) speed of bounding box drawing.

7.2.1 Latency Between Messages

We plan to use iPerf to measure the speed of data trans-
fer of two different formats of data: (i) RGB images (pro-
vided from the camera) and (ii) structured metadata (the
predicted bounding box). For RGB images, we will be us-
ing iPerf’s TCP mode to determine maximum bandwich
utilization and for structured metadata will be using iPerf’s
UDP mode to measure jitter and packet loss.

7.2.2 Stress Testing Bounding Box Drawing

Since the maximum number of objects on the conveyor
is variable, as we would like to simulate how actually waste
management facilities are, we need to be to ensure bound-
ing boxes are draw at a relatively fast pace to ensure real-
time monitoring. To stress test this mechanism, we plan
to continuously send dummy bounding boxes of all sizes
to web application to see the rate at which they show up.
More concretely, we have to measure how fast a batch of
dummy bounding boxes are rendered after they are send
from the Jetson Orin Nano.

7.3 Test for Real-time Detection

In order to ensure that the deep learning model meets
our requirements, we plan to roll out a three-phase test-
ing plan: (i) visualizing predictions on single object toy
problems, (ii) visualizing predictions on multi-object toy

problems, and (iii) visualizing predictions on real-life toy
problems. Only after these three tests pass, we will then
integrate the deep learning model into the overall system.

7.3.1 Single Object Toy Problems

Once the deep learning model has reached adequate per-
formance on our train data set, we will then transition into
analyzing its performance on our test data set. In partic-
ular, we are going to look at how the model generalizes
on “easy” problems. We define “easy” to be images with
only one object in focus. For this stage, we are choosing
to ignore images that have improper lightening and images
where objects are obscured by the background. The model
will only pass this phase if the computed centroid is within
±5 pixels of the of the true centroid.

7.3.2 Multi-Object Toy Problems

Once the deep learning model passed the selected im-
ages from the Single Object Toy Problems stage, we can
then transition into analyzing its performance on multi-
object toy problems. In particular, these images will be
much harder than the images from the previous test set
(i.e. the background is able to obscure the object, objects
are allowed to overlap, and etc.). The idea behind this stage
is to test how the model will perform on images that are
indicative of images the model would see in a waste manage-
ment facility. Similarly to the last stage, if the computed
centroid is within ±5 pixels of the of the true centroid.

7.3.3 Real-Life Toy Problems

Once the deep learning model passed the selected im-
ages from the Multi-Object Toy Problems stage, we can

18-500 Design Review Report - 28 February 2025 Page 10 of 12

then transition into analyzing its performance on real-time
images. Images for this dataset will be collected as followed:
objects will be placed on the conveyor belt in different ori-
entations and locations, random lightening will be selected,
and then the photo will be taken. From here the images
will be human-annotated with a bounding box. The idea
behind this stage is to test how the model will perform in
our system. Similarly to the last stage, if the computed
centroid is within ±5 pixels of the of the human-annotated
centroid.

8 PROJECT MANAGEMENT

8.1 Schedule

Our schedule is split into four main sections: the xy
movement of the gantry, the z-axis movement, the web ap-
plication, and the deep learning model. We have made the
schedule such that the entire system should be fully assem-
bled and essentially complete by the beginning of April.
The reasoning behind this is that we would like to have it
mostly complete before the interim demo, and that month
of April can be used to refine the end-to-end system. How-
ever, if necessary, this extra time will provide slack in case
certain parts of the project fall behind schedule. We are on
track as of now and are maintaining a steady pace to reach
our April goal. The full schedule is shown in Fig. 5.

8.2 Team Member Responsibilities

We have divided team member tasks and responsibli-
ties based on each member’s past experience in each field
and current interests. Teddy Lin would be working mainly
on designing a custom z-axis end effector that can satisfy
the design requirements mentioned above and program-
ming movement into the x, y, z directions. Alejandro Mi-
randa will be working on developing a web stack necessary
for real-time live-streaming and creating a user interface
that helps visualize of the system, as well as obtaining a
depth map from the stereo camera to obtain z-coordinates
for the gantry movement. Ethan Lu will be working on im-
plementing a YOLOv8 OBB model and optimizing model
performance for image classification accuracy and bound-
ing box mIoU. The construction of the full system as well
as end-to-end testing and verification will be done together
as a team.

8.3 Bill of Materials and Budget

The current Bill of Materials for SortBot is shown in
Table 3. It includes all currently purchased parts, their
quantities, vendors, and final prices.

8.4 TechSpark Useage Plans

We plan to meet in TechSpark once a week on Wednes-
day during the allotted registrar timeslot for 18-500: ECE
Design Experience (10:00 a.m. to 11:50 a.m.). At

TechSpark, we hope to take advantage of the many manual
tools — wrenches, screwdrivers, and etc. — to assemble
our project and as well use the additional to perform end-
to-end testing.

8.5 Risk Mitigation Plans

8.5.1 Suction-Type End-Effector Not Performant

It is possible that a suction-cup end effector might not
exert enough force to consistently pick up objects even
when a vacuum is pulled, or that it might not be able to
deal with very rough or porous surfaces. If this happens,
we will move to using a claw-shaped end effector that will
either “grab” or “scoop” up objects.

8.5.2 Estimated Position Is Not Reliable

The current plan is to use our knowledge of the speeds of
the conveyor belt and the gantry, along with the time that
an object is detected, in order to determine the object’s
location so it can be picked up. However, if this method
does not yield accurate enough results to reliably pick up
objects, we could potentially stop the conveyor belt when
an object is detected so that the position of the object after
detection does not change.

8.5.3 Web Socket Communication Is Too Slow

Currently, we plan to use web sockets to establish a
communication protocol between the Jetson Orin Nano and
the web application. Web sockets offer a more sleek ap-
proach to monitoring as the user does not need to be close
to the system to see its progress. Unfortunately, there are
a lot of variables that introduce overhead this communica-
tion method that is not in our control. This like reliability
of internet connection and potential congestion would di-
rectly impact our streaming. One solution to this problem
would be to switch from web socket-based communication
to a more local serial-based communication. Serial com-
munication would remove all these previously mentioned
variables as it is just one device communicating with an-
other directly, and speed will be determine solely based on
bit throughput.

8.5.4 Deep Learning Model Is Too Slow

While the YOLO architecture is optimized architec-
turally, combining bounding box localization and class pre-
diction into one task, there is still a possibility that YOLO
will not be fast enough to run on the Jetson Orin Nano.
In this scenario, we will need to look into hardware-level
optimization using SDKs such as TensorRT and ONNX.
These SDKs are designed for high-performance deep learn-
ing inference, as they focus on aggressive optimizations for
Nvidia graphics chips. Respectively, these two these tech-
niques offer up to a 2x and 1.5-2x speed up for YOLO-based
architectures.

18-500 Design Review Report - 28 February 2025 Page 11 of 12

8.5.5 Deep Learning Model Is Not Precise

In the speed and accuracy trade offs, we chosen to side
in favor of speed by using a one-stage detector. Archi-
tecturally, one-stage detectors will never be as good two-
stage detector due to their lack of a dedicated bounding
box refinement process. If the YOLOv8 OBB model can
not predict precise enough bounding boxes, we will need
to move over to a two-stage detector like Cascade R-CNN
[7]. While Cascade R-CNN will be more precise with its
bounding box localization, it is important to note that it
will introduce additional latency that can not be optimized
and we would need to identify other bottlenecks in the deep
learning pipeline to optimize out in order to achieve real-
time speeds.

9 RELATED WORK

9.1 AMP Delta

AMP’s Delta robotic sorter has a very similar design
and purpose. It’s a robot made to sort recyclables from
trash, which uses a suction-type end-effector to pick up
objects and move them away from the conveyor belt. How-
ever, this robot uses the “Delta” gantry design, which uses
three pairs of rods in a triangular shape that change in
angle in order to move the end-effector where it needs to
go.

9.2 Zen Robotics

Zen Robotics has made a waste sorting machine meant
for lifting heavy-duty trash, such as wood and stone. They
do use a linear gantry system, of using a suction-type end
effector, they use a large, excavator-like claw to scoop and
grab heavy items and throw them away from the main con-
veyor belt. Our design will be similar, however it will be
intended for lightweight trash sorting.

10 SUMMARY

Overall, we propose a design that we hope will be able
to automate the process of sorting trash to make it more
efficient, economical, and safe. Our custom-trained YOLO
model using oriented bounding box prediction will allow
the robot to quickly and accurately identify the existence
and location of recyclables on the conveyor belt. The use
of a Cartesian/Linear robotic gantry should provide the
robot with a large and highly precise range of motion, and
the vacuum end effector should be able to pick up a wide
variety of recyclable items with ease. Lastly, our web in-
terface will allow the user to monitor the robot’s tracking
and history in real time.

Some key challenges of our design will be configuring
the end-effector to work on objects with irregular surfaces,
generating rapid and accurate motion for Cartesian move-

ment, and reducing latency on both the detection of the
objects and the transmission of data to the user interface.

Glossary of Acronyms

• COCO - Common Objects in COntext dataset

• CPU - Central Processing Unit

• DoF - Degrees of Freedom

• GFLOPS - Giga Floating Point OPerations Per Sec-
ond

• GPU - Graphics Processing Unit

• I/O - Input/Output

• mAPV AL - mean Average Precision for VALidation
dataset

• Mbps - Megabits per second

• MBps - MegaBytes per second

• mIoU - mean Intersection over Union

• OBB - Oriented Bounding Box

• ONNX - Open Neural Network eXchange

• RAM - Random Access Memory

• R-CNN - Region-based Convolutional Neural Net-
works

• RGB - Red Green Blue

• SDK - Software Development Kit

• SSD - Single Shot multibox Detector

• TCP - Transmission Control Protocol

• TOPS - Tera Operations Per Second

• UDP - User Datagram Protocol

• USB - Universal Serial Bus

• YOLO - You Only Look Once

References

1 Por. “How Much Do We Waste? A Data-
Driven Guide to Waste and Landfills - Meureśıduo.”
meuReśıduo, 26 July 2022.

2 Liu, Wei, et al. ”SSD: Single Shot MultiBox Detec-
tor.”, EECV

3 Redmon, Joseph, et al. ”You Only Look Once: Uni-
fied, Real-Time Object Detection.”, CVPR

4 Tan, Mingxing, et al. ”EfficientDet: Scalable and
Efficient Object Detection.”, CVPR

5 Lin, Tsung-Yi, et al. ”Microsoft COCO: Common
Objects in Context.”, EECV

18-500 Design Review Report - 28 February 2025 Page 12 of 12

6 Trash Dataset for Oriented Bounded Box,
Roboflow, https://universe.roboflow.com/

trash-dataset-for-oriented-bounded-box/

trash-detection-1fjjc

7 Cai, Zhaowei, and Nuno Vasconcelos. “Cascade R-
CNN: Delving into High Quality Object Detection.”
CVPR

18-500 Design Review Report - 28 February 2025 Page 13 of 12

Table 3: Bill of materials

Description Manufacturer Quantity Cost @ Total
One Nema 17 Steppers STEPPERONLINE 4 $9.99 $39.96
Two 8 mm Smooth Rod McMaster-Carr 2 $37.50 $75.00
Eight LM8UU Bearings MYCNCSHOP 1 $10.99 $10.99
Two 20-tooth GT2 Pulleys WINSHINN 1 $6.99 $6.99
Ten F623ZZ Bearings uxcell 1 $8.99 $8.99
One Arduino Mega 2560 Rev3 Ardunio 1 $53.14 $53.14
One CNC Shield and Two Pololu Stepsticks ACERIRMC 1 $9.99 $9.99
One GT2 Belt SeekLiny 1 $9.99 $9.99
Two M10 Threaded Rods 1000 mm McMaster-Carr 2 $14.86 $29.76
Eight M10 Nuts McMaster-Carr 1 $3.77 $7.54
One M3 Screw Kit Kadrick 1 $7.99 $7.99
One 12V 2A Power Supply NC 1 $7.99 $7.99
Two Bearing Wheels AFUNTA 1 $13.49 $13.49
One Vacuum Cup McMaster-Carr 1 $11.02 $11.02
One Vacuum Pump DC 12V 12W NC 1 $26.99 $26.99
Four Relays AEDIKO 1 $6.99 $6.99
One eYs3D Stereo Camera eYs3D Microelectronics 1 $350.00 $0∗

One Nvidia Jetson Orin Nano Nvidia 1 $249.00 $0∗

Total $326.82
Note: The eYs3D Stereo Camera and Nvidia Jetson Orin Nano were provided to us by Lending

18-500 Design Review Report - 28 February 2025 Page 14 of 12

F
ig
u
re

5
:
G
a
n
tt

C
h
a
rt

