
Texelerate
E1: Andrew Liao, Amelia Heller, Anirudh Prakash

18-500 Capstone Design, Spring 2025
Electrical and Computer Engineering Department

Carnegie Mellon University

System Architecture

Product Pitch
AI co-pilots for text and code completion have become widespread, but
most send user data to remote servers for processing, raising significant
security concerns. As a result, many users — such as developers and
journalists — are unable to use these tools. Their only alternative is to run
models locally, but standard laptop hardware is poorly suited for machine
learning inference, leading to slow performance and high energy
consumption.

To address this gap, we developed an FPGA-based hardware accelerator
capable of running 1.58-bit LLM variants known as BitNets. We also built a
user interface that uses macOS scripting tools to trigger text or code
suggestions in any text box via customizable hotkeys. Our on-device
accelerator provides a competitive, privacy preserving alternative to current
text completion services.

System Description

System Evaluation

Conclusions & Additional Information

If you have a
team logo you
can place that
in this top
region

Our implementation successfully demonstrates the viability of
FPGA-accelerated text completion on a personal device. Although the
power savings over local CPU inference were modest, the significantly
higher tokens-per-second throughput justifies the use of an off-board FPGA,
similar to how data centers prioritize throughput over strict energy efficiency.
Our system achieved notable improvements over local baselines, where
typical Mac performance was limited to 4–5 tokens per second.

Future work includes enabling a headless Python client, supporting
autocomplete at arbitrary cursor locations, and allowing customizable
context window sizes to further improve flexibility and user experience.

Our high-level system architecture consists of the Kria KV260 FPGA on the
hardware side and client-side scripts written in Python and Lua. The Lua
script captures user input from any active text field when a hotkey is
pressed. The Python script establishes an SSH connection with the FPGA
to monitor device readiness and uses secure copy (SCP) over a shared
WiFi network to transfer input data and retrieve inference results. The FPGA
stores our BitNet model and performs inference using a lookup-table-based
arithmetic approach optimized for resource efficiency. In parallel, a
performance profiler reads power consumption metrics from the PMBus
monitors, returning these measurements alongside the inference output.

Hardware: The Kria board runs the BitNet b1.58 LLM using quantized
1.58-bit inference kernels optimized for energy-efficient computation.
Inference is performed via a lookup-table (LUT)-based arithmetic approach,
where preloaded LUTs replace costly matrix multiplications. TL1/TL2 kernels
further reduce bandwidth by compressing full-precision weights.

Software:

In Use:

Requirement Success Criteria Outcome Met?

Latency less than
CPU on a Mac

Tokens / second > 8 Tokens/sec:
15

Yes

Throughout less
than CPU on a
Mac

Time to first token < 250ms Time to first
token:
250ms

Yes

Power
consumption less
than CPU on a
Mac

Power draw < 700 mW Power:
~670mW

Yes

Simple installation
process

Time to download < 15 mins Time to
download:
< 2 mins

Yes

Use Case Metrics

Area Decision Impact

Latency Moderate refresh rate to limit CPU usage. Slightly higher
response time, low
CPU load

Starvation First-come, first-serve without full queue Occasional delays
simpler client side
logic

Model Size Use a small BitNet b1.58 Model over
quantized DeepSeek

Real time speeds,
slightly lower output
quality

Tradeoff Analysis

