

Voice Vault

Section/team number: Justin Ankrom, David Herman, Kemdi Emegwa

18-500 Capstone Design, Spring 2025 **Electrical and Computer Engineering Department** Carnegie Mellon University Team E0

Product Pitch

Voice Vault is a customizable, privacy-oriented home assistant made for tech savvy users who want full control over their data and complete privacy. Critical requirements include:

- Chat with device, play music, and set an alarm
- Choosing your own wake word
- End to end responses under 5 seconds
- Complete data privacy: communication encrypted with TLS, media stored on device, no data shared with third parties
- Setup takes less than an hour

System Description

Software Components:

Voice processor with speech to text – processes wake words and key words and sends to flask server; uses microphone hw Flask server – server that data gets sent to which is then run through Ollama model; uses vm Text to speech handler – receives data from server and outputs through speaker; uses speaker hw Timer/Music - module to handle timer/music Voice vault website (for downloads) - website that gives info on how product works along with downloads Raspberry pi config website – allows user to modify the configurations like wake word **Disassembled view**

Should have at least 95% accuracy in quiet environments Testing showed we accomplished all these requirements.

System Architecture

Raspberry Pi captures voice input, sends it as text to a Flask app on a VM, which forwards it to an Ollama server; the response is streamed back, routed (as conversation, alarm, or music), and played to the user with text-to-speech.

Top Down View

Speaker/Microphone

System Evaluation

•Took all 10 users under an hour to fully setup. We also

System Prompt Testing Performance

Conclusions & Additional Information

•We learned how to plan out, execute, and integrate a product with multiple different independent subsystems

•Gained knowledge of how to navigate team dynamics, while balancing stakeholder needs and pushing through, even amid

validated our product and features •All data usage information is in terms of service •Model has 100%

accuracy •Alarm went off within 1 second of specified time 100,... of time

Use-Case Requirements:

Metric	Target	Actual	
Assistant Query	Variable Wake Word	User able to change Wake Word <1s latency	
Response Time	≥ 5 seconds	* Varied, typicaly less than 5s	
Timer/Music	Can Set Timer/Upload/Play Music	User can upoad multiple songs. Play/Pause/Stop. Set Timer	

•Overall, we were able to design/create a

usable system that met out intial goals

	Electric	al 🗙 Col	mputer
t7	ENG	INEEF	RÍNG

