

#### Forever Akpabio, Emmanuel Obu, Akintayo Salu

#### Use Case

- Problem : Current navigation options for bicycle riders can be distracting and lack essential safety features.
- Solution: Safely navigate places on bikes through audio instructions and vibration feedback for blind spots

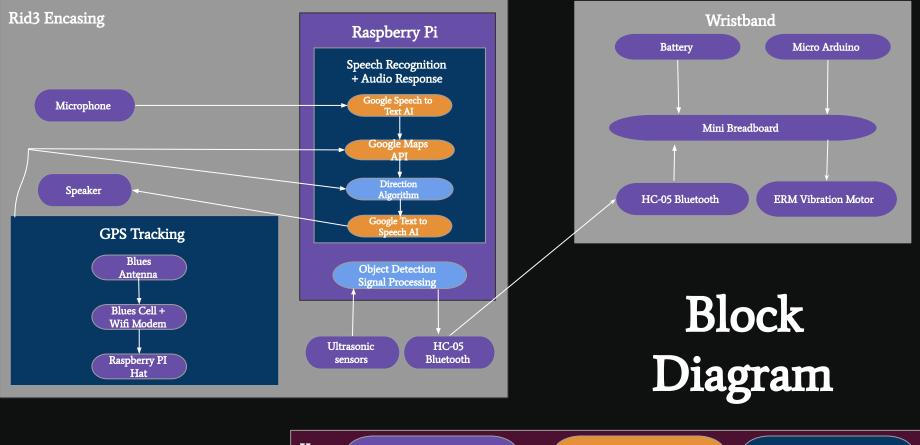
#### **Requirements:**

- Blind spot detection: **95% accuracy rate**
- □ **Vibrational cue** within **1 sec** of object detected in user's blindspot (less than 5 feet)
- User should receive audio instructions to make turns within 200-300 feet before a turn.



# Design Requirements

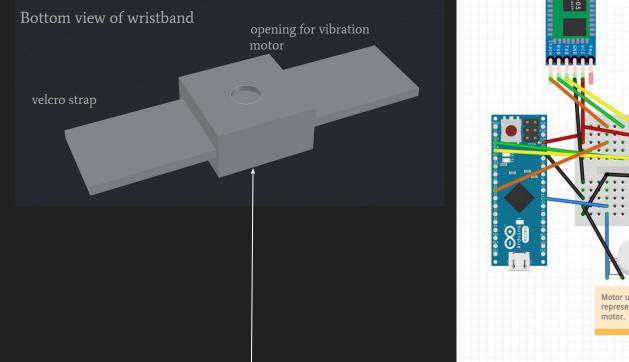
- □ Battery life (~5 hours)
  - □ 500 mAh Battery
  - □ Micro arduino (50mA) + Bluetooth module (30mA) + vibration motor (10mA) = 90mA
  - □ 500/90 = 5.5 hours
- □ Weight (~230 grams)
  - □ Micro Arduino (13g) + Vibration motor (1g) + Bluetooth module (2g) + Mini breadboard(13g)
  - □ 3D printed plastic encasing (180-200g)
- **Ease of usability** 
  - Different vibrations for blind spot detection vs veering off intended route

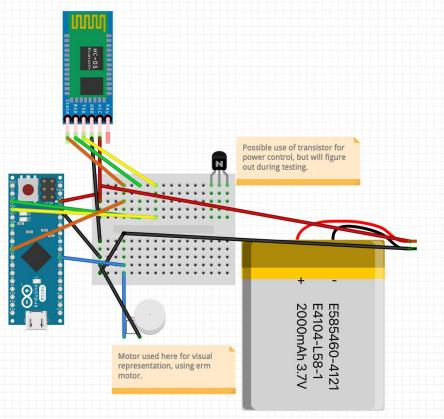

## Design Requirements

Navigation Device

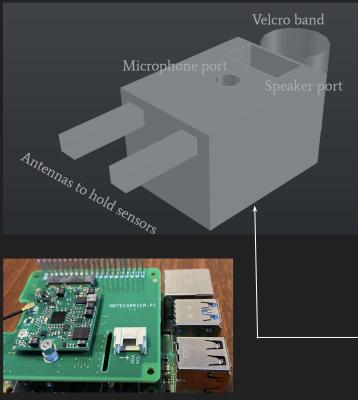
- Easily attachable
  - **5**x5x4 inch case with velcro strap, attach to pole underneath bike seat
- □ Low Latency
  - □ 1-2 seconds to give instructions based on new updated GPS location
  - □ 1 second from object detected in sensors to vibration in wristband
  - □ Bluetooth 38400/9600 baud rate and 100ms latency
- □ Battery life (~10+ hours)
  - □ 10 kA battery, bluetooth module (30mA), RPI 4 (600mA -1A), Sensors 8mA
- □ Accurate detection
  - Sensor range 3~450cm and FOV 30-45 degrees
- □ Precise real time navigation (90% accuracy )
  - Blues starter kit GPS tracking within 5-10 meters with proper connection.
  - Google Maps API estimated to have 90%+ accuracy
  - □ Using Google Speech To Text and Text To Speech for speech system, both are 90%+ accuracy.

### Solution Approach

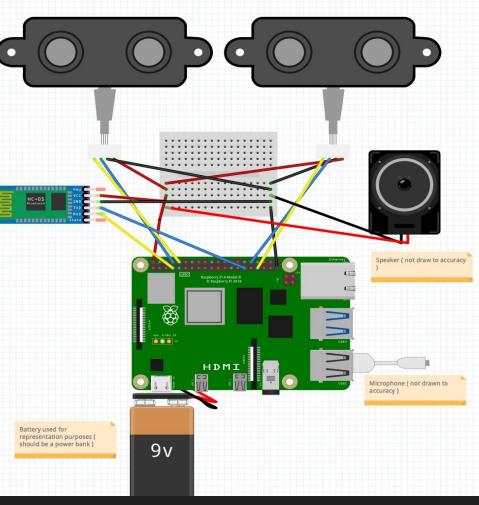

| Solution Feature                                                                                                          | Impact                                                                                                    | Societal Concerns                                                                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Audio Input for<br>designated location at<br>start of journey.                                                            | - Simplifies process of starting journey and makes it hands-off.                                          | <ul> <li>People have different vocal intonations. This concerned is addressed by google voice recognition.</li> </ul>                                                                                   |
| Real time GPS tracking<br>with audio output for<br>direction correctness.                                                 | <ul> <li>Hands off</li> <li>Allows user to focus on the direction that they are going.</li> </ul>         | - Audio cues can be muffled by outside noise.                                                                                                                                                           |
| Ultrasonic sensors for detecting objects.                                                                                 | - Extra safety on the roads for bicycle users, and wider range for detection.                             | <ul> <li>A lot of dependence on sensors catching<br/>correct angles of objects in blind spots, so<br/>continuous testing with different ranges of<br/>objects, speeds, and angles is needed.</li> </ul> |
| If object detected, send<br>ping to haptic feedback<br>wristband that sends a<br>light nudge to the user<br>while riding. | <ul> <li>No need to check blind spots<br/>by turning head.</li> <li>Subtle but easy to notice.</li> </ul> | - Strength of Vibration could be distracting to users, so continuous testing of different vibration modes w/ user feedback                                                                              |




 Key
 Hardware off the shelf
 Software off the shelf
 Miscellaneous


 Hardware Designed
 Software Designed
 Software Designed

### Wristband






### Rid3 Encasing



Raspberry PI w/ modem and Carrier hat connected



Pinout scheme for Raspberry Pi

### Navigation + Speech System

- Receive audio from user (containing desired location)
- 2. Convert audio to text using the Google Speech to Text AI system
- 3. Translate the destination to its longitude and latitude representation using Google Maps Geocoding API
- 4. Make Google Maps Routes API call to retrieve route for entire journey
- 5. Use the user's current GPS location to find the next turn in the journey
- 6. Convert instruction to audio
- Send audio of instruction to external speaker

import requests
api\_key = open('ki.txt').read().strip()

url = '''<u>https://maps.googleapis.com/maps/api/directions/</u> json?destination=DEST&mode=MODE&origin=ORIG&key=API\_KEY'''

mode = 'bicyle'
orig = '40.447888036901304,-79.94648296363464'
destination = '40.44411653616266,-79.94209498494072'

url = url.replace('DEST', destination) url = url.replace('MODE', mode) url = url.replace('ORIG', orig) url = url.replace('API\_KEY', api\_key)

Google Maps API Call

● @asaluedu → /workspaces/rid3 (main) \$ python3 maps.py {'lat': 40.4479319, 'lng': -79.94546179999999} Head <b>east</b> toward <b>Clyde St</b>

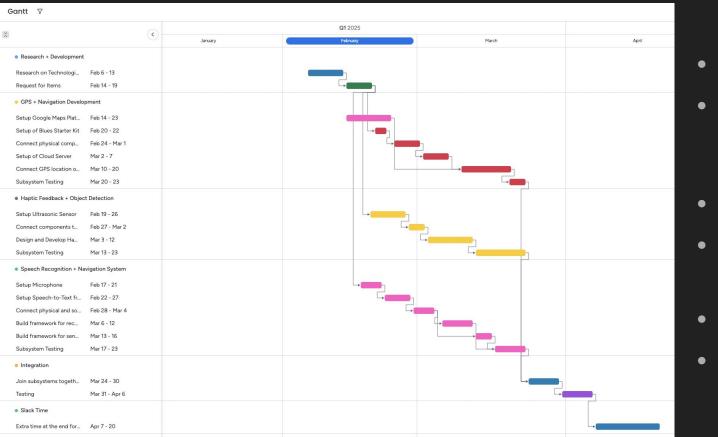
{'lat': 40.4489109, 'lng': -79.9466932}
Turn <b>left</b> onto <b>Clyde St</b>

{'lat': 40.4508856, 'lng': -79.9430531}
Turn <b>right</b> onto <b>Ellsworth Ave</b>

{'lat': 40.4446254, 'lng': -79.9430272} Turn <b>right</b> onto <b>Morewood Ave</b>

{'lat': 40.4444945, 'lng': -79.9421004} Turn <b>left</b> onto <b>Forbes Ave</b>

Google Maps API Return


#### Test, Verification and Validation

| Use Case Requirements                                             | Test Specifics                                                                     | Test Inputs                                                  | Test Outputs                                      | Validation                                                                                                     |
|-------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| <b>95%</b> accuracy rate for detecting object in blind spot       | 100+ tests with<br>different<br>obstacles (e.g.<br>other bikers,<br>drivers, etc.) | Object distance<br>from ultrasonic<br>pulse (from<br>sensor) | Signal for object<br>within 5 feet of<br>the user | A valid test is when signal is<br>correctly initiated when<br>object distance is within 5<br>feet of the user. |
| Vibrational cue within <b>1</b><br><b>sec</b> of object detection | 100+ tests<br>where object<br>detection occurs                                     | Signal from<br>object detection                              | Haptic feedback<br>on wristband                   | A valid test is when latency<br>between the signal and<br>haptic feedback is less than<br>1 second.            |

#### Test, Verification and Validation

| Use Case Requirements                                                                             | Test Specifics                                                                             | Test Inputs             | Test Outputs                          | Validation                                                                                                                            |
|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Receive audio<br>instructions to make<br>turns within <b>200-300</b><br><b>feet prior to turn</b> | 20 different<br>routes are tested                                                          | GPS location of user    | Audio<br>instruction for<br>next turn | A valid test occurs when the<br>correct audio instruction is<br>received within 200-300 feet<br>before the actual turn                |
| <b>90%</b> translation<br>accuracy for extracting<br>destination from user's<br>voice command     | 50+ tests with<br>different<br>destination<br>commands said<br>by different<br>voice types | Audio of user's command | Speech-to-text<br>output              | A valid test is when the<br>speech-to-text output from<br>the user's command matches<br>the actual desired destination<br>for journey |

### Project Management



#### Emmanuel

- Object Detection system
- Haptic Feedback system

#### Forever

- GPS Tracking
   System
- RPi Integration

#### Akintayo

- Speech recognition System
- (Audio)
   Navigation
   Response System