
Rhythm Genesis
D6: Yuhe Ma, Lucas Storm, Michelle Bryson

18-500 Capstone Design, Spring 2025
Electrical and Computer Engineering Department

Carnegie Mellon University

System Architecture

Product Pitch
Our system is entirety software based, and as
such we don’t have any physical devices to show
or describe. On the software side, our system is
primarily built around our audio processing
system, which incorporates Librosa - a Python
package that assists in audio analysis - in order to
detect beat onsets.
As for the rest of the system, the game itself is
built on our own rudimentary engine implemented
in C++ that uses SFML, a free open source library
that assists in 2D graphics creation as well as
handling audio and file navigation.

System Description

System Evaluation

Conclusions & Additional Information

Accuracy of Note Selection Methods

As is the case with most projects, we had some challenges and setbacks - the main one being
a shift in engine about halfway through the semester from Unity to our own engine that was
far more lightweight and a lot faster, but with fewer capabilities and generally more difficult
bugs to work through.
Future work could include varying levels of audio analysis to allow the game to handle a wider
range of music. For example, the user could choose to include vocal separation for pop
songs, meaning that only the rhythm of the voice part would generate tiles, or use a sliding
window algorithm for songs that have wide ranges in dynamics. We could also add different
difficulty levels to the same songs by increasing the threshold for note detection to make for
an easier version of the game with less tiles. Additionally, we could create better UI and
graphics perhaps using a slightly heavier engine.

Metric Target Actual

UI Responsiveness of Input Events and Actions < 50 ms 5ms

Save/Load Performance for ≤ 7 Minute Songs < 5 s 4 s

Animation Performance >= 30 FPS 30 FPS

Beat Map Generation Latency for ≤ 7 Minute Songs < 10 s 4.5 s

Rhythm Detection Error Rate: False Negatives < 10% 2.88%

Rhythm Detection Error Rate: False Positives < 1% 0.05%

Use-Case Requirements:

Onset Strength Envelope of Debussy’s Clair de Lune

Rhythm detection is
implemented by computing
a spectral flux onset
strength envelope and
selecting the timestamps
with the highest peaks, as
they correspond to the
onset of notes. Various
selection techniques were
explored as shown below in
System Evaluation.

Main Menu Core Game Loop Scoring Page

In-Game Beat Map Editor

To test the rhythm detection, we
composed short pieces as unit tests and
manipulated variables such as the
instrument, dynamics, tempo, and
articulation. We compared the generated
beat map to the ground truth timestamps.
We also tested with real songs and aurally
verified the rhythm detection accuracy. We
used logging to measure to latency of UI
interactions. For the beatmap editor, we
confirmed that there was synchronization
between the waveform viewer, progress
bar, and audio playback.

Rhythm Genesis is a rhythm game for desktop in which players can upload their own
songs for a fully customizable experience. The system analyzes the audio to detect the
rhythm and generate a corresponding beat map for the game. Our audio processing
algorithm, when run on single instrument songs between 50 and 220 BPM, is able to
detect the rhythm with over 90% accuracy. The beat map is then used to generate falling
tiles that are synchronized with the rhythm of the uploaded song with an animation quality
of 30 frames per second. The player presses designated keys in time with when the tiles
reach a bar at the bottom of the screen, according to the beat, and receives a score based
on how accurately they aligned with the rhythm.
The player can further customize the game using a beat map editor. The target user of the
beat map editor is someone who has a programming and/or music background. The
editor, which features a waveform viewer and audio playback, allows the player to refine
the auto-generated beat map or create a beat map from scratch by adding or removing
tuples of the timestamp of the note and the lane number from which the tile should fall.
This is especially well-suited for multi-instrumental or vocal tracks, which is out of the
scope of the rhythm detection algorithm.

https://course.ece.cmu.edu/~ece50
0/projects/s25-teamd6/

