Team D6: Rhyfhm Genesis - Yuhe Ma, Michelle Bryson, Lucas Storm

mobile vs. pc rhythm games A sample beatmap from Phigros

Use Case

Popular rhythm games have two limitations:
1) Expensive
2) Not very customizable x

Rhythm Genesis for Rhythm Game Players:

An engaging beatmap is hard to make!

1) Free (available on Steam)
2) Fully customizable (auto-beatmap generation + in game beatmap editor)

Our project encompass areas in Software Engineering and Signal Processing

Requirements (high-level)

e Players can upload music
files in supported formats
(MP3, WAV, OGG, etc.)

e Players can create or auto
generate beatmaps using
their own music

e Responsive gameplay and
precise timing and scoring for
note hits

Osu! beatmap editor

Requirements (gameplay) Ai-aRE

e Auto generation algorithm accuracy X X X X X X X
o Beat alignment error <20 ms o 'j '
e Tempo detection range
o 950-220 BPM (beats per minute)
e Performance off-beat
o Minimum 30 FPS during gameplay
o Song load and processing time < 5 sec
e In-game beat map editor:
o Saving a beat map < 5 seconds

Y
X X x X x x Xx

Technical Challenges (part 1)

e Accurate tempo & beat detection (Signal processing challenges)
e Testing Auto-Generated Beat Maps

In Phase 180" Out of Phase Different Waves

Waves add together Waves cancel each other New wave created

! 1“ + + +
onset

Technical Challenges (part 2)

1.

Synchronization of Falling Notes with the
Beatmap

Performance Bottlenecks (FPS drops, long
load & processing time)

Implementing a User-Friendly Beatmap
Editor

Real-Time Scoring & Feedback System

Publishing on Steam

Solution Approach (high-level)

Development Stack:

M Unity (C#) — Core gameplay, Ul, animations, physics

[Librosa (Python) — Audio analysis for tempo, beats & onset
detection

Workflow:

1JCore Game Loop (Unity) — Ul, gameplay, real-time sync, timing
accuracy, feedback system, hardcoded beatmaps

2JAudio Processing (Librosa) — Detects beats & generates
beatmaps in JSON

3JBeatmap Integration (Unity) — Reads JSON to spawn notes
4)In-Game Beatmap Editor (Unity) — customizable beatmap
editor with waveform visualization

_5)Performance & Optimization (Unity) — Async processing,
object pooling, advanced Ul & visual effects, 60 FPS target
_g/Publishing (Unity & Steam) — Steam integration,
cross-platform compatibility

Librosa

Unity

JSON output
{

"song_name": "blinding-lights.mp3",

"bpm": 171,
"beats": [

{ "timestamp™:
{ "timestamp":
{ "timestamp"
{ "timestamp”

1.2,
2.8,
74.5,

, "note_count"
"note_count™:
note_count"
"note_count™:

2},

1},

3

1}

0127220

Solution Approach (audio processing)

Detecting beats and tempo accurately from any audio file is a challenging signal
processing problem due to diverse musical structures.

Step

1. Preprocessing

2. Tempo Detection

3. Beat Onset Detection

4. Assigning Note Intensity

5. Exporting for Unity

Method Used

Convert to mono, normalize, apply HPSS, filter noise

Use librosa’'s beat_track() , adaptive BPM tracking, HMM
Combine onset_strength() , spectral flux, peak picking
Analyze spectral energy & Mel-frequency power

Convert beats to JSON with timestamps & note counts

Solution Approach (misc.)

e Synchronization of Falling Notes (Game Objects) with the Beatmap
o Adjust note spawn timing based on Unity’s audio DSP time
e Performance Bottlenecks (FPS drops, long load & processing time)
o QObiject Pooling
e Implementing a User-Friendly Beatmap Editor: Grid-based Snapping System
e Real-Time Scoring & Feedback System
o Perfect (<10ms), Good (<20ms), Bad (<40ms), Miss (>40ms).

e Publishing on Steam & Cross Platform Compatibility: Unity Documentation

Testing, Verification, Metrics

Beatmaps: beat alignment error < 20ms 90% of the time

- Use manually created MIDI files (so we know exact timing of each note)

- Test songs with BPM between 30 and 250
Gameplay Responsiveness:

- Use many human testers > 20 and ask for their feedback

- Steam User Feedback
Performance:

- Stress testing with large music files to ensure load/processing time < 5s
"4 Automate Testing Where Possible: Use Python scripts to measure beat
detection accuracy and BPM deviation.

"4 Profile in Unity: Use Unity’s Performance Profiler to analyze FPS bottlenecks.

Tasks/division of labor

_1JCore Game Loop (Unity) — Yuhe Ma & Lucas Storm

2JAudio Processing (Librosa) — \Michelle Bryson & Yuhe Ma
3)Beatmap Integration (Unity) — Yuhe Ma & Lucas Storm

(4 In-Game Beatmap Editor (Unity) — Lucas Storm & Yuhe Ma
_5)Performance & Optimization (Unity) — Lucas Storm & Yuhe Ma
L6 Advanced Ul & Visual Effects (Unity) — Viichelle Bryson

7 Testing & Publishing (Unity & Steam) — ALL OF US

Lucas Storm

Audio Analysis Software

Michelle Bryson

Schedule - Gantt Chart

Task

Deliverables

Game Development

Game Architecture Design

Basic Menu & Ul

Objects (notes) spawning & syncing

Basic Gameplay Mechanism & Scoring System
Gameflow & State Management

JSON Beatmap Parsing & Synchronization
Python Librosa & Unity Integration

In-Game Beatmap Editor

Advanced Real-Time Feedback & Score Page
Pre-Interim Testing

Advanced Ul & Visual Effect & Ul Sounds
Game Logic Debugging & Code Refactoring
User Testing & Stress Testing

Publishing on Steam

Steam Bug Fixing & Final Updates

Preparing for Final Demo

Audio Analysis

Exploring Librosa Library

Single Sound Track Fixed Tempo Analysis
Fixed Tempo Piano Songs Beats Detection
Simple Fixed Tempo Electronic Music Analysis
Fixed Tempo Pop Music Analysis

Advanced Audio Analysis of Complex Music
Preparing for Final Demo

Week 1
2/3/2025

Week 2
2/10/2025

Week 3
2/17/2025

Week 4
2/24/2025

Week 5
3/3/2025

Rush E Gamplay (A Dance of Fire and Ice):
https://youtu.be/r5PV14QKLN8?si=kMIrrfu-e4k1v8kO

Week 6
3/10/2025

Week 7
3/17/2025

Week 8
3/24/2025

Week 9
3/31/2025

Week 10
4/7/2025

Week 11
4/14/2025

Week 12
4/21/2025

Week 13
4/28/2025

