
Team D6: Rhythm Genesis

mobile vs. pc rhythm games A sample beatmap from Phigros

– Yuhe Ma, Michelle Bryson, Lucas Storm

Use Case
Popular rhythm games have two limitations:

1) Expensive

2) Not very customizable

Rhythm Genesis for Rhythm Game Players:

1) Free (available on Steam)

2) Fully customizable (auto-beatmap generation + in game beatmap editor)

Our project encompass areas in Software Engineering and Signal Processing

An engaging beatmap is hard to make!

x

Requirements (high-level)

● Players can upload music
files in supported formats
(MP3, WAV, OGG, etc.)

● Players can create or auto
generate beatmaps using
their own music

● Responsive gameplay and
precise timing and scoring for
note hits

Osu! beatmap editor

Requirements (gameplay)

● Auto generation algorithm accuracy
○ Beat alignment error ≤ 20 ms

● Tempo detection range
○ 50-220 BPM (beats per minute)

● Performance
○ Minimum 30 FPS during gameplay
○ Song load and processing time ≤ 5 sec

● In-game beat map editor:
○ Saving a beat map ≤ 5 seconds

Technical Challenges (part 1)

● Accurate tempo & beat detection (Signal processing challenges)
● Testing Auto-Generated Beat Maps

1. Synchronization of Falling Notes with the

Beatmap

2. Performance Bottlenecks (FPS drops, long

load & processing time)

3. Implementing a User-Friendly Beatmap

Editor

4. Real-Time Scoring & Feedback System

5. Publishing on Steam

Technical Challenges (part 2)

Solution Approach (high-level)
Development Stack:
 🎮 Unity (C#) – Core gameplay, UI, animations, physics
 🎵 Librosa (Python) – Audio analysis for tempo, beats & onset
detection

Workflow:
 1⃣ Core Game Loop (Unity) → UI, gameplay, real-time sync, timing
accuracy, feedback system, hardcoded beatmaps
 2⃣ Audio Processing (Librosa) → Detects beats & generates
beatmaps in JSON
 3⃣ Beatmap Integration (Unity) → Reads JSON to spawn notes
 4⃣ In-Game Beatmap Editor (Unity) → customizable beatmap
editor with waveform visualization
 5⃣ Performance & Optimization (Unity) → Async processing,
object pooling, advanced UI & visual effects, 60 FPS target
 6⃣ Publishing (Unity & Steam) → Steam integration,
cross-platform compatibility

Librosa

Unity

Solution Approach (audio processing)
Detecting beats and tempo accurately from any audio file is a challenging signal
processing problem due to diverse musical structures.

Solution Approach (misc.)
● Synchronization of Falling Notes (Game Objects) with the Beatmap

○ Adjust note spawn timing based on Unity’s audio DSP time

● Performance Bottlenecks (FPS drops, long load & processing time)

○ Object Pooling

● Implementing a User-Friendly Beatmap Editor: Grid-based Snapping System

● Real-Time Scoring & Feedback System

○ Perfect (≤10ms), Good (≤20ms), Bad (≤40ms), Miss (>40ms).

● Publishing on Steam & Cross Platform Compatibility: Unity Documentation

Testing, Verification, Metrics
Beatmaps: beat alignment error < 20ms 90% of the time

- Use manually created MIDI files (so we know exact timing of each note)
- Test songs with BPM between 30 and 250

Gameplay Responsiveness:
- Use many human testers > 20 and ask for their feedback
- Steam User Feedback

Performance:
- Stress testing with large music files to ensure load/processing time < 5s
✅ Automate Testing Where Possible: Use Python scripts to measure beat
detection accuracy and BPM deviation.
✅ Profile in Unity: Use Unity’s Performance Profiler to analyze FPS bottlenecks.

Tasks/division of labor
 1⃣ Core Game Loop (Unity) → Yuhe Ma & Lucas Storm

 2⃣ Audio Processing (Librosa) → Michelle Bryson & Yuhe Ma

 3⃣ Beatmap Integration (Unity) → Yuhe Ma & Lucas Storm

 4⃣ In-Game Beatmap Editor (Unity) → Lucas Storm & Yuhe Ma

 5⃣ Performance & Optimization (Unity) → Lucas Storm & Yuhe Ma

 6⃣ Advanced UI & Visual Effects (Unity) → Michelle Bryson

 7⃣ Testing & Publishing (Unity & Steam) → ALL OF US

Schedule - Gantt Chart
Rush E Gamplay (A Dance of Fire and Ice):
https://youtu.be/r5PV14QKLN8?si=kMIrrfu-e4k1v8kO

