
1
18-500 Final Project Report: SmartWatt 05/02/2025

SmartWatt

Anya Bindra, Erika Ramirez, Maya Doshi

Department of Electrical and Computer Engineering,
Carnegie Mellon University

Abstract—This project develops a household energy
optimization system that monitors energy appliance usage and
reduces power consumption costs through efficient dynamic
scheduling of devices. Using linear programming and machine
learning, the system schedules deferrable loads and balances
power drawn from solar and grid sources in a cost optimal
manner. The system automates appliance control switching
based on the generated schedule. A web-based UI dashboard
provides real-time data and user controls. The frontend
displays appliance usage insights, including consumption
trends, solar power contribution, and recommendations on
optimal on/off times. It also displays scheduled appliance
operations outputted by optimization model

Index Terms—Backend, Frontend, Database, Energy, ESP32,
Forecasting, HA (Home Assistant), Loads, Model Predictive
Control, Optimization, Power, Raspberry Pi, Solar Panel, MQTT

I.​ INTRODUCTION
 The number of energy-consuming devices has surged in
recent years. With the increasing complexity of smart
appliances, electric vehicles, temperature control systems,
fluctuating grid prices, and renewable energy sources like
solar and wind, managing power consumption efficiently has
become challenging for individuals to handle manually [10].
Moreover, the rise in power consumption has not only led to
higher utility costs for individuals but has also placed greater
stress on aging power grids, making them more vulnerable to
failures caused by sudden surges in demand [11]. To address
these challenges, optimizing home energy usage has become
essential. By leveraging machine learning and optimization
algorithms, we forecast power generation, grid prices, and
consumption patterns, enabling intelligent appliance
scheduling that maximizes renewable energy usage while
minimizing costs. SmartWatt provides personalized
recommendations, empowering users to make informed
energy decisions. By synchronizing energy consumption with
renewable power generation, we significantly reduce
dependence on non-renewable energy sources, contributing to
a more sustainable future.

 This represents a significant advancement over existing home
automation systems such as Ecobee [15] and Enphase Energy
[16], which primarily rely on manually programmed,
rule-based automations. These traditional systems lack
adaptability, as they do not dynamically respond to real-time
conditions such as fluctuating grid prices, solar generation,
and changing load consumption patterns. Manually configured

optimizations are neither as thorough nor effective as an
automated system because users are unlikely to consider every
possible optimization scenario. The optimization framework
integrates with Home Assistant (HA), an open-source home
automation platform that enables users to control and
automate smart home devices. Home Assistant is a centralized
hub for managing IoT-enabled appliances, energy monitoring,
and automation rules. By leveraging Home Assistant’s flexible
architecture, SmartWatt serves as an energy management
add-on, providing forecasting and optimization capabilities to
users who already utilize Home Assistant for smart home
automation.

Fig.1:Graphical representation of the optimization system

II.​ USE-CASE REQUIREMENTS
A.​ Reduction in Electricity Costs

​The goal is to achieve a minimum 10% reduction in electricity
costs within a household (compared to the baseline costs)

By predicting the solar power generation, we schedule
high-consumption activities during peak solar production
times, thereby reducing reliance on grid electricity. We use
weather forecasts from Solcast and OpenMeteo. Studies on
photovoltaic energy forecasting report MAPE values ranging
from 15% to 25% for short-term forecasts (0-24 hours) using
advanced machine learning and numerical weather prediction
models [17]. The target we set is 80% accuracy for predicting
the solar power output for the next 24h period. We aim for at
least 75% of the solar power to be consumed onsite [we refer
to this as maximizing self-consumption later]. One mechanism
of enforcing this is to have about 30% of high power
deferrable loads being scheduled during peak solar production
times [as a constraint in our optimization algorithm]

Understanding daily fluctuations in electricity prices enables
the scheduling of deferrable loads during off-peak, lower-cost
periods. We aim to have < 25% RMSE for grid pricing
forecasts. A sub-25% MAPE ensures that our optimization
algorithms can reliably shift energy consumption to lower-cost
periods, minimizing electricity expenses. Further, we can
enforce a reduction of electricity prices by having about 20%
of loads shifted to a low cost time-of-use period as a
constraint.

Initially, we planned to incorporate household load forecasting
into SmartWatt. Accurate demand prediction would have

2
18-500 Final Project Report: SmartWatt 05/02/2025

allowed us to better align energy consumption with available
power resources. However, as the project progressed, we
decided not to pursue load forecasting for the capstone. The
main reason was that forecasting these loads requires large
amounts of historical data and introduces substantial
uncertainty and variability in the output. Additionally, load
usage patterns can differ drastically from household to
household. Instead, we chose to focus on optimizing
controllable loads and solar usage using user-defined
schedules, which aligned better with user preferences.

Figure 2: Expected Output of SmartWatt, aligning consumption to periods of
high solar power output and low time of use pricing

B.​ User Interaction and Recommendations

The dashboard should feature two key sections: a live log of
automated actions and a table of suggested actions for user
intervention. The live log displays a real-time feed of all the
actions the system has executed automatically, including
details such as the timestamp, action taken [appliance
switched on/off], estimated energy savings (kWh), and
completion status. This ensures transparency, allowing users to
track how the system optimizes energy usage without manual
input. The dashboard contains a suggested actions table for
tasks that the system is unable to complete on its own. This
section should list recommendations such as rescheduling
some appliances to low time-of-use periods , along with an
estimate of the potential energy savings. By combining these
features, the dashboard provides users with both insight into
automated energy optimizations and actionable guidance to
further reduce electricity consumption

C.​ System Responsiveness

SmartWatt ensures efficient real-time power monitoring of
appliances. Device sensors connected to the ESP32 sample
power consumption data at 1 Hz. These readings are then
averaged over a 5-minute window to filter out noise and
provide a stable, reliable measure of energy consumption. The
dashboard should be designed to update every 5 minutes,
reflecting the most recent power consumption trends while
ensuring minimal computational load on the system.

To provide a good user experience, the response latency
should be ≤1.5 seconds, ensuring that whenever a user
interacts with the dashboard—such as refreshing data, viewing

D.​ Compute Requirements
Since we are optimizing home power consumption, we do not
want the device running the optimization algorithms to be a
significant contributor to the power bill. The most common
device to run Home Assistant on is a Raspberry Pi. Home
Assistant is pretty resource light so we should be able to run
SmartWatt and all the optimization and forecasting models on
the same device as Home Assistant. The Raspberry Pi
currently consumes 2.7 to 3.5W on idle (which it will be
running at most of the time) and up to 10-15 watts when fully
loaded, so it is the ideal computer for a task like this.

E.​ Model House Requirements
We construct a model house that replicates real-world
residential power consumption patterns while ensuring safety
and efficiency. To achieve this, we use DC appliances instead
of AC appliances due to safety considerations [also aligns with
modern renewable energy solutions such as solar power and
battery storage]. The system simulates realistic load and power
consumption patterns by scaling all appliance power
consumption values by a specific factor (which ended up
being ~1/1000) determined on a per-appliance basis, to ensure
proportional energy usage across different household devices.

To effectively demonstrate the real-time actions taken by
SmartWatt, we scale simulated days down to 5-minute
intervals. This accelerated timeline allows us to observe and
analyze the system’s decision-making, automated
optimizations, and user recommendations in a more compact
and interactive manner. By implementing this approach,
SmartWatt provides a realistic yet controlled environment for
testing home energy management strategies, optimizing
energy usage, and validating the effectiveness of automated
energy-saving interventions.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION
SmartWatt has a machine learning and optimization
subsystem, software and database backend, as well as an
embedded control layer which are interconnected and work to
predict, monitor and control energy usage within the
household. We have data sources which collects real-time data

●​ Power Sensors: Measure the current output of
photovoltaic panels, power consumption of loads

●​ Weather Data API: Retrieves local weather forecasts
affecting solar production.​

●​ Grid Price API: Accesses real-time electricity pricing
from utility providers

1. A forecasting module, utilizing collected data to predict
future energy distribution 2. An optimization module:
Processes forecasts to develop schedules for running
appliances. 3. A user interface dashboard which provides
homeowners with insights and control over their energy usage.
4. Microcontroller unit which facilitates appliance switching
and control, polling sensors and actuation of resistive loads

3
18-500 Final Project Report: SmartWatt 05/02/2025

Figure 3: Machine Learning and LP Solver Subsystem

Figure 4: Software, Frontend and Backend Subsystem, Embedded Subsystem for Appliance Control

4
18-500 Final Project Report: SmartWatt 05/02/2025

The main difference between the block diagrams above and
in the design phase was that we removed the load
forecasting module and added a custom Solar Forecast that
is trained on power data we obtained from our own solar
panels. Solcast provides generalized forecasts based on
satellite data and broad weather models, which we found
did not capture the shading patterns specific to our rooftop
setup. So we obtained historical power data from our solar
panels and chose to train our XGBoost models using that.

We use the ESPHome Firmware which simplifies the
configuration and integration of the ESP32 in the embedded
module with the sensors and actuator (motor, LED). A
detailed control flow diagram listing communication
protocols between the different subsystems (end-to-end) is
included in the implementation section.

Here is the operational workflow:

User Input: Homeowners interact with the system via the
React Typescript application, with a frontend dashboard
displaying energy metrics and the backend processing
results from the optimization algorithm.

Data Collection: The ESP32 microcontroller gathers
real-time data from sensors and transmits it to the
Raspberry Pi which is then transferred to the backend.

Data Analysis and Forecasting: The sensor data, grid price
data and weather data is fed to the forecaster. The forecaster
outputs what the next 24h solar power output and grid
prices are, and these are used by the optimization algorithm.​
​
Optimization Execution: Based on the forecasts, the system
uses linear programming and MPC to generate a schedule
for running appliances. Recommendations are relayed back
to the user via the display monitor.​
​
Appliance Switching : The backend communicates the
output of optimization in the form of commands to the
ESP32 via MQTT/HTTP and then the ESP controls the
appliances (LED, Motor etc) via GPIO by sending switch
ON/OFF commands.

A.​ Engineering Principles

We applied modular engineering design principles by
breaking SmartWatt into independently developed
components: solar forecasting, load scheduling,
optimization, and device control. This streamlined
integration and testing. We used embedded systems
principles in working with the ESP32 microcontroller,
managing GPIO and power constraints. Real-time control
and system optimization required integrating both hardware
and software with user-defined preferences.​
​

B. Scientific Principles

We used the conservation of energy principle. In our linear
programming formulation, we enforce a constraint that
ensures energy consumed by devices at any time does not
exceed the sum of solar generation and grid availability.
This reflects the fundamental physical law that energy
cannot be created or destroyed—only transferred. By
modeling net energy flow in each time slot, the optimizer
schedules loads in a way that respects real-world energy
balance, preventing unrealistic behavior like consuming
more energy than is available from the combined sources.
Additionally, our solar forecasting relied on atmospheric
science and the photoelectric effect, particularly how cloud
cover, humidity, and irradiance influence photovoltaic
output. These features were mapped from real-world
weather data to improve forecast accuracy, informing our
scheduling decisions.​
​
C. Mathematical Principles

For solar prediction, we used XGBoost regression, which
relies on minimizing a regularized loss function through
gradient boosting. This involves principles from statistics
and numerical optimization (gradient descent). Our
scheduling system is formulated as a binary linear program.
The objective function we formulate for our scheduler
minimizes total energy cost while satisfying constraints on
device duration and energy availability.

​
​ ​ IV. DESIGN REQUIREMENTS

A.​ Energy Optimization Requirements

One of the primary goals of SmartWatt is to ensure that at
least 75% of the generated solar energy is consumed
on-site. To achieve this, the system will actively schedule >
30% of deferrable loads during peak solar generation hours.
The solar energy utilization efficiency is constrained by the
ratio of onsite consumption to total generated power:

To achieve at least a 10% reduction in electricity cost
compared to a baseline consumption pattern, the algorithm
should output a schedule such that > 20% of deferrable​
loads shift their consumption to lower-cost Time-of-Use
periods. Grid electricity price forecasting will be used to
optimize the load shifting, with a RMSE of <25%.

The convergence time of the linear optimization algorithm
must be within 20s, with a sub-optimality gap of <10%

5
18-500 Final Project Report: SmartWatt 05/02/2025

(difference between true optima and value returned by
solver). To enforce this, an iteration limit will specify the
maximum number of iterations the solver will perform.
Each iteration involves processing constraints and variables
to move closer to an optimal solution. Setting this limit
helps prevent excessive computation time on particularly
challenging optimization problems.

B.​ Data Accuracy

SmartWatt uses forecasts from Solcast API and
Open-Meteo to provide real-time solar irradiance data,
which will be used to estimate solar power generation with
a MAPE accuracy of > 80%. Open-Meteo API will supply
weather forecasts, including cloud cover, temperature, and
solar radiation levels, to refine solar power generation
predictions.

Accurate measurement of power consumption across loads
is critical to the optimization and control of energy usage.
The INA226 power sensor must measure current and power
within 98% accuracy. According to the datasheet [8],
measurement error is within ±0.1% to ±0.5%.

C.​ System Monitoring and Responsiveness

To provide users accurate and timely insights about which
appliances are consuming the most power, SmartWatt
features a dashboard with real-time power consumption
updates. The dashboard must update power consumption
data every 5 minutes. To achieve this, the sensors will
sample data to ESP32 at a frequency of 1 Hz, with an
averaging window of 5 minutes before being sent to the
backend.​
​
A responsive and low-latency dashboard enhances the user
experience. The system must achieve a dashboard response
latency of ≤3s when loading real-time data. Here is the
end-to-end latency breakdown:

●​ ESP32 ↔ Django Backend: Network latency ≤100
ms, request processing ≤200 ms.

●​ Backend ↔ Database: Query execution time ≤500
ms

●​ Backend ↔ Frontend: API response ≤200 ms,
JSON parsing ≤100 ms

 D. Load Simulation and Hardware Performance

To accurately replicate household consumption behavior in
a scaled prototype, the system must operate within realistic
power ranges. The ESP32 microcontroller is capable of
operating within a 3.3V-12V range, drawing up to 600mA
current as needed. This falls in the range of 0.1W to 5W. In
the real world, most appliances operate between 0.1 kW to
5 kW, so we will use a scaling factor of 1/1000 to simulate

loads. 5, 1W solar panels will be used for power generation
(which can be connected in series to provide up to 5W).
Internal resistive elements (100mΩ - 10Ω) such as LEDs
and PWM fans will be used to simulate power draw.

During testing, we experimented with 1.5–3V 15,000 RPM
DC motors to simulate variable appliance loads. However,
we found that these motors were power-hungry and did not
adhere to the expected wattage constraints for our scaled
model. Despite their low voltage ratings, they drew high
instantaneous currents - exceeding the safe operating range
of our ESP32 microcontroller and bypassing the intended
0.1W–5W power envelope that was designed to mimic
household appliances at a 1:1000 scale.

V. DESIGN TRADE STUDIES

A.​ Optimization Algorithms for Scheduling Loads
The optimization module schedules deferrable loads
throughout the day and balances solar and grid power. Our
approach uses linear programming (LP) and model
predictive control (MPC). Decision variables record each
time step and load (load_on[t, load] = 1 if on, 0 if off),
continuous variables for grid power (positive for
consumption, negative for injection), and battery
charge/discharge powers. MPC uses a model to predict
future behavior over a finite horizon. The algorithm has a
prediction horizon which looks ahead to account for
time-varying factors like energy prices, solar generation,
and load demand, rolling optimization that adapts to
real-time changes in load consumption patterns, ensuring
the schedule remains optimal as conditions evolve. We
chose this approach as it is crucial for energy systems where
electricity prices may follow time-of-use tariffs, and solar
power availability depends on weather and time.

Alternative 1 : Stochastic Dynamic Programming is an
optimization method that models the energy management
problem as a Markov Decision Process, where the state
variables are current time, battery state of charge, and
deferrable load status. Decision variables are actions such
as turning loads on/off or charging/discharging the battery,
with transition probabilities accounting for randomness in
solar generation, load demand, and energy prices. This
approach is not used by us because SDP requires solving a
Bellman equation iteratively, which is computationally
intensive, especially with continuous state and action

6
18-500 Final Project Report: SmartWatt 05/02/2025

spaces. In our design requirement, we have that the
algorithm should converge within 20s, which is not feasible
with SDP. Additionally, SDP relies on well-defined
probabilistic models of solar generation, energy prices, and
load demand. In real-world scenarios, these distributions are
hard to estimate accurately, leading to suboptimal decisions

Alternative 2: Rule Based Programming which consists of
predefined logic and thresholds for decision-making.
Instead of solving an optimization problem, a rule-based
system follows if-then conditions based on real-time sensor
inputs. For example, if solar power is greater than a set
threshold, then turn on deferrable loads. Or if grid prices
exceed a predefined cost, then discharge the battery to
supply loads. We did not choose this method because the
system only reacts to current conditions, not future forecasts
(e.g., tomorrow’s energy prices or solar generation). Also
the rules are hardcoded, so if a rule turns on appliances
whenever solar power is high, it might still do so even if
tomorrow’s electricity price is cheaper, leading to higher
costs, suboptimal.

B.​ Solar and Grid Price Forecasting Models
We initially considered using LSTM networks for
forecasting grid electricity prices due to their ability to
capture long-term dependencies and memorize temporal
trends in sequential data. LSTMs are well-suited for
learning patterns like daily or weekly price cycles and
responding to lagged effects. However, we found that
LSTMs required extensive training data (more than 3
weeks), were sensitive to tuning, and had long inference
times—making them less practical for frequent, lightweight
retraining in our real-time pipeline. We pivoted to
XGBoost, which handled time-based features (lagged
prices, hour of day, day of week) effectively. It trained
faster, generalized well with less data, and provided more
interpretable feature importance, making it a better fit for
SmartWatt’s retraining and deployment requirements. Here
is a trade-offs table describing the pros and cons of different
forecasting models

Model Overfitting
Risk

Accuracy Limitation

XGBoost Low Medium-high,
Balances feature

selection and
regularization

High memory usage

ElasticNet
(Skforest
Autoregre

ssive)

Low Medium-high,
Balances feature

selection and
regularization

Requires tuning L1
(Lasso), L2 (Ridge)
ratios, struggle with

nonlinear
relationships

LSTM High High for
capturing
long-term

Needs large training
datasets, memorizing

noise instead of

dependencies trends

ARIMA Moderate Medium, good
for short-term

time-series

Cannot capture
sudden price/demand

fluctuations

Since grid prices and solar power do not exhibit extreme
fluctuations, we do not need to train nonlinear models such
as neural networks which are computationally intensive.

C.​ MCU Platform for Embedded Control
The control subsystem automates appliance switching based
on the generated optimization schedule, requiring a device
with I/O capabilities, communication, and processing for
executing commands. ESPHome simplifies device setup
and control by allowing us to define device configurations
using YAML files which are compiled to firmware and
flashed onto the ESP MCU. ESP32 has great peripheral
support and works with GPIO, I2C, UART, ADC, and
PWM for flexible sensor and actuator control. However, we
will be using RPi5 to actually host and run our optimization
models. ESP32 has only a dual core , 520 KB of SRAM and
limited flash storage which are too small to process
compressed ML models efficiently, slowing down Wi-Fi
communication, sensor polling. Bi-directional
communication of the switching commands between RPi5
and ESP32 done through MQTT/Bluetooth BLE (wireless)

Attributes ESP32 ESP8266 Arduino MKR
Wifi 1010

TI CC3220

Connectivity WiFi,
Bluetooth,
native
MQTT,
API,
UART, I2C

No Bluetooth,
WiFi, native
MQTT, API,
UART ,I2C

BLE,
WiFi,MQTT,
UART, I2C

BLE,
WiFi,MQT,
UART, I2C

API Support ESPHome
API

ESPHome API REST/WebSocket REST/Web
Sockets

Processing
Power

Dual-core
240 MHz

Single-core
80/160 MHz

32-bit ARM
Cortex-M0+

32-bit
ARM
Cortex-M4

GPIO 34 17 22 27

ESPHome
Compatibility

Full
Support

Full Support Custom Firmware
(no native
support)

Custom
Firmware
(no native
support)

RAM 320 KB
SRAM,
4MB Flash

80 KB RAM,
512 KB to 4MB
Flash

32 KB SRAM,
256 KB Flash

256 KB
SRAM, 1
MB Flash

D.​ Software Stack (Frontend + Backend)
We chose a FastAPI+ React + Python stack. FastAPI
provides low-latency API responses and asynchronous
request handling, making it ideal for real-time interactions
like scheduling updates, sensor polling and solar forecast
queries. Initially, we considered using Django due to its
built-in database and ORM, but found it to be heavier and

7
18-500 Final Project Report: SmartWatt 05/02/2025

less suited to building a fast, lightweight API. It also
supports real-time data streaming using WebSockets,
making it suitable for handling real-time power monitoring
data from devices. On the frontend, React was chosen for its
component-based architecture, supporting WebSockets and
API polling, making it ideal for building dynamic
dashboards with real-time data visualization. React enables
a highly interactive user experience.​
​
​ ​ E. Chatbot Interface System

We tested several LLMs for SmartWatt’s chatbot, including
Meta’s LLaMA2 and Google’s Gemma, but found their
responses to be inconsistent and too verbose, with higher
latency and lower relevance in a home energy context. To
improve user experience, we added a natural language
interface to guide and clarify queries. Ultimately, we chose
OpenAI’s GPT-4 via API, which offered more reliable,
concise, and accurate responses—with roughly 20–40%
better accuracy and latency around 750 ms. This ensured
smooth, interpretable answers to user questions about
energy savings, device schedules, and solar forecasts.

 VI. SYSTEM IMPLEMENTATION

​ 

Figure 5: End to End Control Flow Diagram

The flowchart depicts the end-to-end control flow of the
entire system. The ESP32 receives appliance schedules and
toggles relay switches connected to appliances such as
PWM fans, LEDs, battery packs and other DC loads (3- 12
V, 0.1W to 5W, 0.1Ω to 100Ω) via GPIO. We chose lower
wattage resistive elements, instead of directly controlling
full-scale home appliances that require high-voltage AC
power and a wall socket connection. This decision was
made based on public safety considerations. High-power
inductive loads (compressors, large motors) cause voltage
spikes and electromagnetic interference that can damage
ESP32 circuits.

Figure 5 : Device Control setup with ESP32, INA226 power sensors, solar
input, and a PWM fan load.

We used relays in the circuit to control the appliances using
the low-voltage digital outputs of the ESP32. Since the
ESP32 operates at just 3.3 volts, it cannot directly switch
devices which require higher voltages and significant
current. Relays act as electrically isolated switches,
allowing the microcontroller to safely toggle power to these
appliances without any direct electrical connection. This
provides protection against surges or short circuits, ensuring
the ESP32 isn’t damaged by power fluctuations.

The core scheduling and optimization logic remains the
same whether controlling small DC loads or AC appliances.
Once the optimization model is validated, the system can be
scaled to real appliances using relay switches, allowing
integration with smart plugs and energy meters. We have
programmable relay switches which are electronic on/off
controllers, enabling the ESP to efficiently manage devices
based on load forecasts and energy availability.
Additionally, the ESP32 continuously polls sensors such as
the INA 226 power sensors over I2C, GPIO, transmitting
real-time data back to RPi5 for optimization feedback and
updates to the backend. This setup ensures stable appliance
switching and low-latency (<=1.5s) communication.

8
18-500 Final Project Report: SmartWatt 05/02/2025

A.​ Forecasting Module Implementation

1. Solar Power Forecasting

●​ Open-Meteo API [12]: Uses
latitude/longitude-based weather forecasts (solar
irradiance which is then converted to PV power
using following formula)

●​ Solcast API: Provides PV generation predictions.
●​ Persistence Model: Updates forecasts with

real-time PV production data.

Figure 6 : Solar Forecast predicted by XGBoost, mapping OpenMeteo
weather features

2. Grid Price Forecasting

We used the Nordpool Integration [2] which provides spot
market electricity prices for regions in Europe. We could
not find a good API providing real-time grid prices for the
U.S. market, so we opted for Nordpool which is
open-source, and integrates with Home Assistant.

Figure 7 : Grid Price Forecast predicted by XGBoost, mapping OpenMeteo
weather features to time of day

Figure 8: Forecasts rendered on the dashboard

B.​ Optimization Framework
We formulated the energy management problem as a linear
optimization problem, with linear objective function and
affine constraints. The main advantage of LP is that if the
problem is well posed and the region of feasible possible
solutions is convex, then a solution is guaranteed and
solving times are usually fast when compared to other
techniques such as dynamic programming, MDPs or
simplex method. However, if a problem is too big (too
many objective functions/ constraints) or it is not
converging fast enough to a solution, memory limits can be
exceeded.

Objective Function

The constraints ensure that self-consumed power at any
given time step cannot exceed the available solar power,
and the self-consumed power cannot exceed the total power
demand (If solar power generation is high,
self-consumption is limited by demand, if load is high,
self-consumption is limited by solar power available)

2. The second objective function aims to model how much
power is drawn from the grid and quantify costs​
​

where is the total period of optimization (hrs), is ∆

𝑜𝑝𝑡
∆

𝑡
timestep (hr), (W) is the power drawn from 𝑃

𝑔𝑟𝑖𝑑, 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑
grid, is the cost of drawing power from the grid 𝑢𝑛𝑖𝑡

𝐿𝑜𝑎𝑑𝐶𝑜𝑠𝑡
($/KWh)

Constraints

9
18-500 Final Project Report: SmartWatt 05/02/2025

Power Balance Equation

This follows from the conservation of energy. It ensures
that the sum of all power inflows and outflows is equal to
zero, so that all energy produced, consumed, stored, or
exchanged with the grid is accounted for.

To actually solve the LP problem, we used solvers in PuLP,
a Python library for linear programming. After testing
several solvers, we chose PULP_CBC_CMD, which is
PuLP’s default CBC (Coin-or branch and cut) solver. It
provided a reliable balance between performance and
compatibility. CBC was sufficient for our problem size and
scheduling horizon, offering sub-second solve times with
consistent results. Also sometimes GLPK and COIN_CMD
which are other solvers occasionally failed to find a feasible
solution, even when one clearly existed—under tight
constraint conditions

We also incorporated user defined priorities, so in the case
where the user chose a high/low priority, the new objective
function became

subject to the same constraints as before.

This flexibility allows users to tailor scheduling
recommendations to their energy goals—whether they're
aiming to save money, increase reliance on solar power
instead of the grid, or find a balance between both.

Figure 9 : SmartWatt’s scheduling interface

C . Software (Frontend, Backend)

SmartWatt is built on a FastAPI + Python + React stack.
The FastAPI backend is responsible for handling API
requests between Home Assistant, executing optimization
algorithms, managing real-time data streaming (storing
power monitoring data), and running machine learning
models. The backend also exposed RESTful endpoints for
the frontend, sensor data, control commands and
optimization results, and connected with Home Assistant
via HTTP and MQTT protocols. SmartWatt frontend
subscribes to WebSocket updates from the backend and
Home Assistant. This allows the dashboard to reflect live
changes in power consumption, solar generation, and device
status without requiring manual refreshes. For example,
when the ESP32 sends updated energy readings or a device
changes state, those changes are pushed instantly to the UI
via WebSocket events. This ensures the user interface
remains synchronized with the underlying system state..
WebSocket integration was essential for enabling a smooth
user experience in a system that operates on continuous
real-time data.

For the frontend, we used React.js to create a responsive
and interactive web interface. Users view real-time data
from sensors, monitor device schedules, and manually
override system-generated commands. The dashboard also
visualized solar generation forecasts and price trends,
allowing users to make informed decisions about appliance
usage and tracking power consumption.​
​
Initially, we implemented on-demand inference by loading
the ML model during each POST request. This caused
severe latency spikes and server crashes under concurrent
load, as multiple model loads overwhelmed memory and
CPU resources. To address this, we shifted to a preloaded
background model approach, initializing the model once at
server startup and sharing it across requests. This improved
performance — reducing inference latency from 10s to
<600 ms and enabling reliable concurrent request handling.

Figure 10 : Dashboard providing manual control over devices

10
18-500 Final Project Report: SmartWatt 05/02/2025

Figure 11 : SmartWatt's analytics dashboard visualizes
energy costs by device, category, and time of day

Figure 12 : SmartWatt’s Chat Interface powered by OpenAI

Figure 13 : Device Actuation Control Panel where users can switch on/off devices, schedule when to start and end devices, see
device status (on/off) and see graphs of power consumption across devices

Figure 14: Model House displaying controllable electronic components

11
18-500 Final Project Report: SmartWatt 05/02/2025

 VII. TEST, VERIFICATION AND VALIDATION
A.​ Tests for Forecasting Models

To validate the solar power forecasting model, we
performed testing across 7 days of data and compared
predicted solar output against real sensor readings from the
solar panel. We achieved an average MAPE of 8.5% which
is within our design requirement (MAPE <20%), RMSE of
~0.15W. To evaluate the performance of our solar
forecasting model fairly, we split our dataset into 80%
training and 20% testing based on chronological order to
preserve time-series integrity. This ensured that the model
was trained only on past data and evaluated on future,
unseen data.

Figure 15 : Testing Accuracy for Solar Forecast

To test the grid price forecasting model, we trained on
historical hourly price data and evaluated predictions
against actual future prices from data obtained through
NordPool API. After testing we found that the model had a
MAPE of ~5% on average and RMSE of 0.0175 which is
within our design requirements

Figure 16 : Testing Accuracy for Grid Price Forecast

B.​ Tests for Optimization Algorithm

We created a series of controlled test cases where grid
prices, solar output, and device constraints were manually
specified. Each test scenario involved devices with known
durations, priorities, and energy demands. We then verified
whether the linear programming solver produced schedules

that satisfy all constraints—such as exact duration
allocation and binary on/off values at each time slot. We
also compared the pre-optimization cost (if a device ran
naively during peak hours) to the post-optimization cost
computed using our cost function. On average, we found
that the daily energy cost was 17% lower when using
SmartWatt’s optimization compared to a random schedule.
This was because we found that about 24% of consumption
of deferrable loads were moved to times of low grid prices
and high solar availability.

The algorithm converged across all test scenarios, even for
large 48 slot intervals. Additionally, feasibility testing was
done to ensure that constraints (device duration, grid/solar
capacity limits) were never violated. Additionally, we stress
tested the model against inputs under varying conditions,
such as empty solar forecasts and flat and spiky grid prices,
to make sure that the optimizer returns logical output.

Figure 17: Training loss curve showing convergence of the solar
forecasting model over 20 epochs, with loss decreasing steadily and
stabilizing near zero

We tested for the duality gap—the difference between the
primal and dual objective values at convergence. In theory,
a properly solved LP should yield a duality gap of zero,
indicating strong duality and an optimal solution. We ran
the optimizer across multiple device scheduling scenarios
and logged both the primal and dual values using the
solver's diagnostic output. In all cases, the duality gap was
within a negligible numerical tolerance () confirming 10−6

that the solver reached optimality. This validated that our
LP formulation was well-posed and that the solver was
functioning correctly.

12
18-500 Final Project Report: SmartWatt 05/02/2025

Figure 18 : Duality Gap Graph of the Optimizer

We measured solver runtime to ensure that the optimization
algorithm could operate in real time, even on
resource-constrained devices. We recorded the time taken to
compute optimal schedules across varying numbers of
devices and time slots. For typical use cases involving 3–5
devices over a 24-hour horizon (48 half-hour slots), the
solver consistently produced results in <1s. This meets our
design case requirements.

Figure 19: Solver Time Convergence

C.​ Tests for Device Monitoring & Control

To verify the accuracy and responsiveness of the
ESP32-based power monitoring system, we measured how
accurately the power sensors were logging power. The
INA226 sensors were configured to sample power data
continuously. Based on our calibration tests (measured V
and I separately, then multiplied to get power and see how
off that was from the data logged onto the dashboard), the
measurement error remained within ±1%, satisfying the
design specification for accuracy.

To validate system reliability, we developed automated
scripts to query backend API endpoints and confirm
consistent data flow from the ESP32 to the dashboard. We
also measured packet loss and transmission delays, both of
which remained negligible under normal operating
conditions.

To validate the reliability of the device control interface, we
developed a script that programmatically sent control
commands to the backend API—such as turning devices on
or off and updating schedules. The script logged each HTTP
request, along with the corresponding timestamp, response
code, and device state returned by the server.

These logs allowed us to verify that all commands were
executed within an average response time of under 200
milliseconds, and that the server correctly propagated the
new device states to the frontend via WebSocket updates.
Additionally, this testing helped us confirm that the backend
logic maintained state consistency and handled edge cases
gracefully. The device control script thus served both as a
stress test and a logging tool for ensuring robust API
interactions.

To evaluate the responsiveness of device control, we
measured the actuation latency—the time between issuing a
control command via the dashboard and the physical
activation of the device. Using a stopwatch, we found that
the average actuation latency was approximately 2s (the
LEDs switched on/off in under 1s, the motors which had
higher wattage took about 2s) under normal network
conditions. This meets our design requirements. This
latency includes API processing time, ESP32 command
reception, and hardware switching delay. The system was
also tested under Wi-Fi load to ensure performance stability,
and no command failures or missed activations were
observed. These results confirm that the system delivers
near real-time actuation.​
​
D. User Satisfaction and User Friendliness​
We conducted a round of user testing with 6 participants
who are energy aware. Testers were given common tasks
such as checking their device power usage, adjusting
optimization priorities, running the optimizer, and manually
toggling devices through the dashboard. We observed their
interactions and collected feedback on navigation clarity,
responsiveness, and visual layout. Users gave a 7/10 on the
scheduling understanding, 8/10 on feature usability and
7/10 on UI Navigation. Common suggestions included
improving tooltip explanations for optimization parameters
and adding clearer indicators for real-time data refresh.
Most users found the system intuitive and said they would
use SmartWatt to monitor their energy usage.

​
Figure 20 : User Satisfaction Survey Results​

13
18-500 Final Project Report: SmartWatt 05/02/2025

​ ​ VIII. PROJECT MANAGEMENT

A.​ Schedule
The original design schedule outlined a four-phase

milestone plan: hardware prototyping, ML model
development, backend integration, and dashboard interface.
While the core structure remained intact, model training and
hardware integration took longer than anticipated due to
sensor calibration issues and API latency debugging,
shifting optimization module testing by approximately one
week. However, parallel progress on the dashboard and user
testing allowed us to catch up by the final review stage. A
detailed Gantt chart with milestone adjustments is provided
on the final page of this report.

B.​ Team Member Responsibilities
Anya worked on the machine learning and optimization

models, including forecasting models, REST API design,
backend logic, and frontend dashboard development. She
also handled device actuation and control via the ESP32
and integration with Home Assistant. Maya focused on the
hardware layer, setting up the Raspberry Pi, sourcing
components, building the prototype power system, and
wiring the components into the house. They also supported
backend hardware integration and system testing. Erika
took charge of physical demo construction, visual layout
design, chatbot integration, and full-stack frontend/backend
coordination. The division of tasks allowed us to meet
overlapping milestones without bottlenecks, even when
some components—such as hardware integration—took
longer than originally planned.

C.​ Bill of Materials and Budget​

We spent about $350 of our budget. Please refer to the Bill
of Materials at the end of our report.

D.​ TechSpark Usage
We used the laser cutters in TechSpark for our model

house, as well as the laser cutters in the IDeATe space in
Hunt Library.​

E. Risk Management

We encountered several risks across all subsystem
developments. In the ML Inference subsystem, a
performance issue arose from loading trained models inside
the FastAPI route handlers. This caused server crashes and
latency spikes above 3 seconds under concurrent requests.
To address this, we preloaded the models at server startup
using FastAPI’s lifecycle hooks, reducing average inference
time to <1s to meet the design requirement. We also
implemented fallback logic to handle cases where the model
or cache failed. Additionally, we found that errors in the
solar and price forecasts could propagate into the
optimization module, leading to unreliable device
schedules. This was mitigated by introducing forecast
smoothing and uncertainty buffers. During model training,

our LSTM and CNN forecasters sometimes plateaued due
to vanishing gradients, especially when predictions already
closely matched real values. Initially, we added
regularization terms and white noise perturbations to
maintain learning dynamics. However, after the predictions
were suboptimal, we pivoted to using XGBoost for our
forecasting model. For the solar forecast, by feeding in
recent cloud cover, irradiance, and precipitation forecasts
from OpenMeteo, XGBoost produced more stable and
interpretable solar output predictions.

Additionally, closer to the final week, the router on Maya’s
laptop stopped working. Relying on a laptop-generated
hotspot led to intermittent dropouts between the Raspberry
Pi and backend services, resulting in unreliable device
control and data synchronization. To resolve this, we
transitioned to a dedicated router to establish a more stable
local network, while also conducting stress tests and
keeping the old setup as a fallback in case of connectivity
issues. On the Hardware side, integrating the ESP32,
INA226 sensors, relays, and Raspberry Pi into the limited
physical space of the demo house presented both spatial and
wiring challenges. To reduce risk, we adopted a modular
prototyping approach, building and validating each
subsystem independently before integration. This helped
isolate and fix electrical issues early. Also several relays
had to be swapped out since they failed under sustained
inductive loads from the motors.

Within the Backend and API layer, performance degraded
when users made concurrent optimization requests or when
the Matplotlib charts were generated on demand. Chart
rendering added ~400 ms of latency per user. We resolved
this by precomputing figures in the background and caching
results.

Finally, to manage Team and Schedule risk, we distributed
responsibilities across subsystems. When hardware delays
occurred, other team members progressed on independent
parallel tasks. The division allowed us to recover from
unexpected setbacks and maintain the timeline.

 IX. ETHICAL ISSUES
While SmartWatt aims to empower users with real-time
energy optimization and sustainability insights, several
ethical considerations arise in privacy and public safety.

A core feature of our system is a personalized chatbot
assistant that helps users understand their energy usage,
recommend schedule changes, and explain optimization
outcomes in natural language. However, this level of
personalization introduces privacy risks. The chatbot
interacts with historical device usage patterns, forecasted
behaviors, and potentially sensitive data (e.g., routines
inferred from load consumption schedules). If improperly
secured or logged, this data could be misused or accessed

14
18-500 Final Project Report: SmartWatt 05/02/2025

by unauthorized actors. To mitigate this, we ensured that all
user interactions are processed locally or through
authenticated APIs, and no personal identifiers are stored
with logs. Long-term deployments should consider
incorporating encryption, role-based access control, and
transparent data policies to ensure user trust.​
​
Another ethical concern involves algorithmic
decision-making, particularly in how our optimization
system balances cost-saving against comfort or fairness.
Edge cases—such as unexpected solar drop-offs or
inaccurate forecasts—can lead the system to schedule
essential devices at inconvenient times or delay operation
entirely. This could disproportionately affect users with
strict routines, accessibility needs, or less flexibility in
appliance use. For example, someone relying on a medical
device or needing consistent hot water might be negatively
impacted if their device is deprioritized due to cost
considerations. We addressed this by allowing users to set
strict scheduling constraints and override optimization
preferences. Still, further refinement of the optimization
engine to prioritize equity, not just efficiency, would be
essential in broader deployments.

SmartWatt also raises broader environmental ethical
considerations. While its core mission aligns with reducing
carbon emissions by shifting load to cleaner energy
windows, there's a risk of unintentionally increasing grid
strain if poorly scheduled or scaled across many users
without grid coordination. To mitigate this, we designed the
system to prioritize solar self-consumption and support
demand flattening, not just cost minimization. In the future,
integrating carbon intensity signals into the objective
function could align optimization with environmental goals.

From a public safety and welfare perspective, automation of
high-power devices (like HVACs, water heaters, or EV
chargers) poses potential risks if optimization overrides
essential usage. Edge cases—such as a misforecasted solar
drop could delay device activation or cluster schedules,
inadvertently disrupting daily routines or, in extreme cases,
endangering individuals who rely on consistent access (e.g.,
for medical or mobility devices). To address this, we allow
users to set non-negotiable constraints (e.g., minimum run
windows) and manually override optimization when
needed.

Lastly, over-automation risk must be acknowledged. As
users come to rely on SmartWatt’s recommendations, there's
potential for overdependence or reduced visibility into how
decisions are made. If a model error occurs or a system fails
silently, users may miss critical issues. To mitigate this, we
built transparency into the dashboard—allowing users to
see forecasted prices, solar output, and optimized decisions
with confidence scores—so they can override or inspect
results as needed.

X. RELATED WORK
Google Nest has played a significant role in shaping

smart home energy solutions with products like Nest Renew
and the Nest Thermostat [13]. Nest Renew, launched in
2021, optimizes household energy usage by shifting
consumption to cleaner energy periods through its Energy
Shift feature. Additionally, Savings Finder continuously
analyzes user habits to recommend energy-efficient settings.
The Nest Thermostat, redesigned for affordability and ease
of use, incorporates smart scheduling and HVAC
monitoring, making energy efficiency more accessible to a
broader audience. These developments highlight Google’s
commitment to integrating AI-driven automation into
household energy management.

Academic projects (OpenEnergyMonitor [18], Home
Assistant’s Energy Dashboard) offer strong foundations for
energy data collection and visualization. However, they
often lack machine learning–driven forecasting and
optimization or require manual configuration of
automations. Our project extends these ideas by adding
real-time LP-based scheduling, personalized chatbot
interaction, and integration of solar and price forecasting.​
​
Tesla’s Powerwall enables homes to store excess solar
energy for later use, reducing reliance on the grid during
peak hours. Startups like Span and Sense are innovating
with smart electrical panels and real-time energy
monitoring, allowing users to track and control their energy
consumption at the circuit level. Additionally, academic
research in edge computing and IoT-based home automation
has explored decentralized control systems that optimize
energy use with minimal latency. These advancements
collectively demonstrate a shift toward intelligent,
self-regulating home energy ecosystems, paving the way for
more sustainable and cost-effective living environments.

XI. SUMMARY

Our system successfully met the majority of the design
specifications laid out at the beginning of the project. We
achieved reliable real-time power monitoring with <2%
sensor error, functional device control with sub-200 ms
actuation latency, and optimization algorithms that
consistently reduced energy cost by 20%. Additionally, the
ML forecasting components achieved acceptable accuracy
for both solar output and grid price prediction, enabling
effective schedule generation.
Together, these components formed a tightly integrated
system that responded in real time to user inputs, sensor
data, and forecasted conditions—delivering to the user
transparency over their energy consumption, improved
control over their home energy use and cost savings.

15
18-500 Final Project Report: SmartWatt 05/02/2025

Future Work

To improve system robustness and scalability, several
extensions can be made. Refining the cost function to
include user comfort and usage continuity can produce
more intuitive, user-friendly schedules. Adaptive learning
can be implemented to retrain forecast models on rolling
data, improving long-term accuracy. Parallelizing solver
execution and improving backend caching would reduce
latency and improve performance under load. The system
can also be extended to support battery, wind, and
geothermal power, enabling broader renewable energy
integration. Finally, developing a mobile app would be
useful since most users use phones to remotely control
appliances and view their power consumption data.

Lessons Learned
Integration of all the subsystems was challenging, but
taught us how to effectively synchronize hardware with
software. Stress testing was good for diagnosing failures
and improving stability. Through iterative testing and user
feedback, we gained valuable experience in user-centered
design—ensuring transparency, manual override, and
real-time feedback were central to the interface. We learned
that design modularization is essential for achieving parallel
development, maintaining steady progress, and ensuring
effective collaboration across subsystems. Identifying risks
early and designing for safe failure modes and redundancy
is important. ​

GLOSSARY OF ACRONYMS
MQTT – Message Queuing Telemetry Transport
OBD – On-Board Diagnostics
RPi – Raspberry Pi
GPIO – General Purpose Input-Output
TOU : Time-of-Use Pricing
RMSE: Root Mean Square Error
MAPE: Mean Average Percentage Error
API: Application Programming Interface
REST: Representational State Transfer

REFERENCES

[1]​ “SDKs and Developer Resources: SolcastTM.” Solcast,
solcast.com/sdk. Accessed 26 Feb. 2025.

[2]​ Home Assistant. “Nord Pool.” Home Assistant,
www.home-assistant.io/integrations/nordpool/. Accessed 26 Feb.
2025.

[3]​ Home Assistant. “Raspberry Pi.” Home Assistant,
www.home-assistant.io/installation/raspberrypi/. Accessed 26 Feb.
2025

[4]​ “Energy Management for Home Assistant.” EMHASS,
emhass.readthedocs.io/en/latest/. Accessed 26 Feb. 2025.

[5]​ Lauinger, D., et al. “A linear programming approach to the
optimization of Residential Energy Systems.” Journal of Energy
Storage, vol. 7, Aug. 2016, pp. 24–37,
https://doi.org/10.1016/j.est.2016.04.009.

[6]​ Davidusb-Geek. “DAVIDUSB-Geek/Solarhome-Control-Bench:
Open Testbench for Control and Optimization Methods for the
Energy Management of a Simple Solar Home.” GitHub,
github.com/davidusb-geek/solarhome-control-bench. Accessed 26
Feb. 2025.

[7]​ Custom-Components. “Custom-Components/Nordpool: This
Component Allows You to Pull in the Energy Prices into
Home-Assistant.” GitHub, github.com/custom-components/nordpool.
Accessed 26 Feb. 2025.

[8]​ “INA226.” INA226 Data Sheet, Product Information and Support |
TI.Com.

[9]​ Simmini, Francesco, et al. “Model Predictive Control for Efficient
Management of Energy Resources in Smart Buildings.” MDPI,
Multidisciplinary Digital Publishing Institute, 7 Sept. 2021,
www.mdpi.com/1996-1073/14/18/5592.

[10]​ Caldera, Matteo, et al. “Energy-Consumption Pattern-Detecting
Technique for Household Appliances for Smart Home Platform.”
MDPI, Multidisciplinary Digital Publishing Institute, 11 Jan. 2023,
www.mdpi.com/1996-1073/16/2/824.

[11]​ Almughram, Ohoud, et al. “Home Energy Management Machine
Learning Prediction Algorithms: A Review.” Atlantis Press, Atlantis
Press, 2 Feb. 2022,
www.atlantis-press.com/proceedings/iciai-21/125969975.

[12]​ “Free Weather API.” Open, open-meteo.com/. Accessed 28 Feb.
2025.

[13]​ Google Store. Google, https://store.google.com/?hl=cs&pli=1.
Accessed 28 Feb. 2025.

[14]​ Tesla. Powerwall, https://www.tesla.com/powerwall. Accessed 28
Feb. 2025.

[15]​ “Ecobee.” Smart Thermostats & Smart Home Devices,
www.ecobee.com/en-us/. Accessed 28 Feb. 2025.

[16]​ “Harness the Sun to Make, Use, Save, and Sell Your Own Power.”
Enphase,
enphase.com/?srsltid=AfmBOoryH-AhxqQKFMHED5-FIIkp6yu4Jt3
k1B9LR_pXMIxEmPiatxu4. Accessed 28 Feb. 2025.

[17]​ Dávid Markovics, et al. “Comparison of Machine Learning Methods
for Photovoltaic Power Forecasting Based on Numerical Weather
Prediction.” Renewable and Sustainable Energy Reviews, Pergamon,
23 Mar. 2022,
www.sciencedirect.com/science/article/pii/S136403212200274X.

[18]​ “Open Energy Monitor” OpenEnergyMonitor,
openenergymonitor.org/. Accessed 2 May 2025.

https://store.google.com/?hl=cs&pli=1

16
18-500 Final Project Report: SmartWatt 05/02/2025

BILL OF MATERIALS

17
18-500 Final Project Report: SmartWatt 05/02/2025

GANTT CHART TABLE

	I.​INTRODUCTION
	
	II.​USE-CASE REQUIREMENTS
	A.​Reduction in Electricity Costs
	B.​User Interaction and Recommendations
	C.​System Responsiveness
	D.​Compute Requirements
	E.​Model House Requirements

	III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION
	A.​Energy Optimization Requirements
	One of the primary goals of SmartWatt is to ensure that at least 75% of the generated solar energy is consumed on-site. To achieve this, the system will actively schedule > 30% of deferrable loads during peak solar generation hours. The solar energy utilization efficiency is constrained by the ratio of onsite consumption to total generated power:
	To achieve at least a 10% reduction in electricity cost compared to a baseline consumption pattern, the algorithm should output a schedule such that > 20% of deferrable​loads shift their consumption to lower-cost Time-of-Use periods. Grid electricity price forecasting will be used to optimize the load shifting, with a RMSE of <25%.
	C.​System Monitoring and Responsiveness
	 D. Load Simulation and Hardware Performance
	A.​Optimization Algorithms for Scheduling Loads
	B.​Solar and Grid Price Forecasting Models
	C.​MCU Platform for Embedded Control
	D.​Software Stack (Frontend + Backend)

	 VI. SYSTEM IMPLEMENTATION
	A.​Forecasting Module Implementation
	1. Solar Power Forecasting
	B.​Optimization Framework
	C . Software (Frontend, Backend)

	 VII. TEST, VERIFICATION AND VALIDATION
	
	
	​​VIII. PROJECT MANAGEMENT
	A.​Schedule
	B.​Team Member Responsibilities
	C.​Bill of Materials and Budget​
	D.​TechSpark Usage

	X. RELATED WORK
	XI. SUMMARY
	Our system successfully met the majority of the design specifications laid out at the beginning of the project. We achieved reliable real-time power monitoring with <2% sensor error, functional device control with sub-200 ms actuation latency, and optimization algorithms that consistently reduced energy cost by 20%. Additionally, the ML forecasting components achieved acceptable accuracy for both solar output and grid price prediction, enabling effective schedule generation.
	Lessons Learned

