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Abstract—This project develops a household energy 
optimization system that monitors energy appliance usage and 
reduces power consumption costs through efficient dynamic 
scheduling of devices. Using linear programming and machine 
learning, the system schedules deferrable loads and balances 
power drawn from solar and grid sources in a cost optimal 
manner. The system automates appliance control switching 
based on the generated schedule. A web-based UI dashboard 
provides real-time data and user controls. The frontend 
displays appliance usage insights, including consumption 
trends, solar power contribution, and recommendations on 
optimal on/off times. It also displays scheduled appliance 
operations outputted by optimization model 
 

Index Terms—Backend, Frontend, Database, Energy, ESP32, 
Forecasting, HA (Home Assistant), Loads, Model Predictive 
Control, Optimization, Power, Raspberry Pi, Solar Panel, MQTT 
 

I.​ INTRODUCTION 
 The number of energy-consuming devices has surged in 
recent years. With the increasing complexity of smart 
appliances, electric vehicles, temperature control systems, 
fluctuating grid prices, and renewable energy sources like 
solar and wind, managing power consumption efficiently has 
become challenging for individuals to handle manually [10]. 
Moreover, the rise in power consumption has not only led to 
higher utility costs for individuals but has also placed greater 
stress on aging power grids, making them more vulnerable to 
failures caused by sudden surges in demand [11]. To address 
these challenges, optimizing home energy usage has become 
essential. By leveraging machine learning and optimization 
algorithms, we forecast power generation, grid prices, and 
consumption patterns, enabling intelligent appliance 
scheduling that maximizes renewable energy usage while 
minimizing costs. SmartWatt provides personalized 
recommendations, empowering users to make informed 
energy decisions. By synchronizing energy consumption with 
renewable power generation, we significantly reduce 
dependence on non-renewable energy sources, contributing to 
a more sustainable future.  
 
 This represents a significant advancement over existing home 
automation systems such as Ecobee [15] and Enphase Energy 
[16], which primarily rely on manually programmed, 
rule-based automations. These traditional systems lack 
adaptability, as they do not dynamically respond to real-time 
conditions such as fluctuating grid prices, solar generation, 
and changing load consumption patterns. Manually configured 

optimizations are neither as thorough nor effective as an  
automated system because users are unlikely to consider every 
possible optimization scenario. The optimization framework 
integrates with Home Assistant (HA), an open-source home 
automation platform that enables users to control and 
automate smart home devices. Home Assistant is a centralized 
hub for managing IoT-enabled appliances, energy monitoring, 
and automation rules. By leveraging Home Assistant’s flexible 
architecture, SmartWatt serves as an energy management 
add-on, providing forecasting and optimization capabilities to 
users who already utilize Home Assistant for smart home 
automation. 
 
 

 

 
 
 
 
 
 
Fig.1:Graphical representation of the optimization system  

II.​ USE-CASE REQUIREMENTS 
A.​ Reduction in Electricity Costs 

​The goal is to achieve a minimum 10% reduction in electricity 
costs within a household (compared to the baseline costs) 
 
By predicting the solar power generation, we schedule 
high-consumption activities during peak solar production 
times, thereby reducing reliance on grid electricity.  We use 
weather forecasts from Solcast and OpenMeteo. Studies on 
photovoltaic energy forecasting report MAPE values ranging 
from 15% to 25% for short-term forecasts (0-24 hours) using 
advanced machine learning and numerical weather prediction 
models [17]. The target we set is 80% accuracy for predicting 
the solar power output for the next 24h period. We aim for at 
least 75% of the solar power to be consumed onsite [we refer 
to this as maximizing self-consumption later]. One mechanism 
of enforcing this is to have about 30% of high power 
deferrable loads being scheduled during peak solar production 
times [as a constraint in our optimization algorithm] 
 
Understanding daily fluctuations in electricity prices enables 
the scheduling of deferrable loads during off-peak, lower-cost 
periods. We aim to have < 25% RMSE for grid pricing 
forecasts. A sub-25% MAPE ensures that our optimization 
algorithms can reliably shift energy consumption to lower-cost 
periods, minimizing electricity expenses. Further, we can 
enforce a reduction of electricity prices by having about 20% 
of loads shifted to a low cost time-of-use period as a 
constraint. 

 
Initially, we planned to incorporate household load forecasting 
into SmartWatt. Accurate demand prediction would have 
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allowed us to better align energy consumption with available 
power resources. However, as the project progressed, we 
decided not to pursue load forecasting for the capstone. The 
main reason was that forecasting these loads requires large 
amounts of historical data and introduces substantial 
uncertainty and variability in the output. Additionally, load 
usage patterns can differ drastically from household to 
household. Instead, we chose to focus on optimizing 
controllable loads and solar usage using user-defined 
schedules, which aligned better with user preferences.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Expected Output of SmartWatt, aligning consumption to periods of 
high solar power output and low time of use pricing  

B.​ User Interaction and Recommendations 

The dashboard should feature two key sections: a live log of 
automated actions and a table of suggested actions for user 
intervention. The live log displays a real-time feed of all the 
actions the system has executed automatically, including 
details such as the timestamp, action taken [appliance 
switched on/off], estimated energy savings (kWh), and 
completion status. This ensures transparency, allowing users to 
track how the system optimizes energy usage without manual 
input. The dashboard contains a suggested actions table for 
tasks that the system is unable to complete on its own. This 
section should list recommendations such as rescheduling 
some appliances to low time-of-use periods , along with an 
estimate of the potential energy savings. By combining these 
features, the dashboard provides users with both insight into 
automated energy optimizations and actionable guidance to 
further reduce electricity consumption 

C.​ System Responsiveness 

SmartWatt ensures efficient real-time power monitoring of 
appliances. Device sensors connected to the ESP32 sample 
power consumption data at 1 Hz. These readings are then 
averaged over a 5-minute window to filter out noise and 
provide a stable, reliable measure of energy consumption. The 
dashboard should be designed to update every 5 minutes, 
reflecting the most recent power consumption trends while 
ensuring minimal computational load on the system.  

To provide a good user experience, the response latency 
should be ≤1.5 seconds, ensuring that whenever a user 
interacts with the dashboard—such as refreshing data, viewing 

D.​ Compute Requirements 
Since we are optimizing home power consumption, we do not 
want the device running the optimization algorithms to be a 
significant contributor to the power bill. The most common 
device to run Home Assistant on is a Raspberry Pi. Home 
Assistant is pretty resource light so we should be able to run 
SmartWatt and all the optimization and forecasting models on 
the same device as Home Assistant. The Raspberry Pi 
currently consumes 2.7 to 3.5W on idle (which it will be 
running at most of the time) and up to 10-15 watts when fully 
loaded, so it is the ideal computer for a task like this. 
 

E.​ Model House Requirements 
We construct a model house that replicates real-world 
residential power consumption patterns while ensuring safety 
and efficiency. To achieve this, we use DC appliances instead 
of AC appliances due to safety considerations [also aligns with 
modern renewable energy solutions such as solar power and 
battery storage]. The system simulates realistic load and power 
consumption patterns by scaling all appliance power 
consumption values by a specific factor (which ended up 
being ~1/1000) determined on a per-appliance basis, to ensure 
proportional energy usage across different household devices.  
 
To effectively demonstrate the real-time actions taken by 
SmartWatt, we  scale simulated days down to 5-minute 
intervals. This accelerated timeline allows us to observe and 
analyze the system’s decision-making, automated 
optimizations, and user recommendations in a more compact 
and interactive manner. By implementing this approach, 
SmartWatt provides a realistic yet controlled environment for 
testing home energy management strategies, optimizing 
energy usage, and validating the effectiveness of automated 
energy-saving interventions. 

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION 
SmartWatt has a machine learning and optimization 
subsystem, software and database backend, as well as an 
embedded control layer which are interconnected and work to 
predict, monitor and control energy usage within the 
household. We have data sources which collects real-time data  

●​ Power Sensors: Measure the current output of 
photovoltaic panels, power consumption of loads 

●​ Weather Data API: Retrieves local weather forecasts 
affecting solar production.​ 

●​ Grid Price API: Accesses real-time electricity pricing 
from utility providers 

1. A forecasting module, utilizing collected data to predict 
future energy distribution 2. An optimization module: 
Processes forecasts to develop schedules for running 
appliances. 3. A user interface dashboard which provides 
homeowners with insights and control over their energy usage. 
4. Microcontroller unit which facilitates appliance switching  
and control, polling sensors and actuation of resistive loads 
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Figure 3:  Machine Learning and LP Solver Subsystem 

 
Figure 4: Software, Frontend and Backend Subsystem, Embedded Subsystem for Appliance Control 
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The main difference between the block diagrams above and 
in the design phase was that we removed the load 
forecasting module and added a custom Solar Forecast that 
is trained on power data we obtained from our own solar 
panels. Solcast provides generalized forecasts based on 
satellite data and broad weather models, which we found 
did not capture the shading patterns specific to our rooftop 
setup. So we obtained historical power data from our solar 
panels and chose to train our XGBoost models using that. 
 
We use the ESPHome Firmware which simplifies the 
configuration and integration of the ESP32 in the embedded 
module with the sensors and actuator (motor, LED). A 
detailed control flow diagram listing communication 
protocols between the different subsystems (end-to-end) is 
included in the implementation section.  

 
Here is the operational workflow: 
 
User Input: Homeowners interact with the system via the 
React Typescript application, with a frontend dashboard 
displaying energy metrics and the backend processing 
results from the optimization algorithm.  
 
Data Collection: The ESP32 microcontroller gathers 
real-time data from sensors and transmits it to the 
Raspberry Pi which is then transferred to the backend. 
 
Data Analysis and Forecasting: The sensor data, grid price 
data and weather data is fed to the forecaster. The forecaster 
outputs what the next 24h solar power output and grid 
prices are, and these are used by the optimization algorithm.​
​
Optimization Execution: Based on the forecasts, the system 
uses linear programming and MPC to generate a schedule 
for running appliances. Recommendations are relayed back 
to the user via the display monitor.​
​
Appliance Switching : The backend communicates the 
output of optimization in the form of commands to the 
ESP32 via MQTT/HTTP and then the ESP controls the 
appliances (LED, Motor etc) via GPIO by sending switch 
ON/OFF commands. 
 

A.​ Engineering Principles 

We applied modular engineering design principles by 
breaking SmartWatt into independently developed 
components: solar forecasting, load scheduling, 
optimization, and device control. This streamlined 
integration and testing. We used embedded systems 
principles in working with the ESP32 microcontroller, 
managing GPIO and power constraints. Real-time control 
and system optimization required integrating both hardware 
and software with user-defined preferences.​
​

B. Scientific Principles 

We used the conservation of energy principle. In our linear 
programming formulation, we enforce a constraint that 
ensures energy consumed by devices at any time does not 
exceed the sum of solar generation and grid availability. 
This reflects the fundamental physical law that energy 
cannot be created or destroyed—only transferred. By 
modeling net energy flow in each time slot, the optimizer 
schedules loads in a way that respects real-world energy 
balance, preventing unrealistic behavior like consuming 
more energy than is available from the combined sources. 
Additionally, our solar forecasting relied on atmospheric 
science and the photoelectric effect, particularly how cloud 
cover, humidity, and irradiance influence photovoltaic 
output. These features were mapped from real-world 
weather data to improve forecast accuracy, informing our 
scheduling decisions.​
​
C. Mathematical Principles 

For solar prediction, we used XGBoost regression, which 
relies on minimizing a regularized loss function through 
gradient boosting. This involves principles from statistics 
and numerical optimization (gradient descent). Our 
scheduling system is formulated as a binary linear program. 
The objective function we formulate for our scheduler 
minimizes total energy cost while satisfying constraints on 
device duration and energy availability.  

​
​ ​ IV. DESIGN REQUIREMENTS 

A.​ Energy Optimization Requirements 

One of the primary goals of SmartWatt is to ensure that at 
least 75% of the generated solar energy is consumed 
on-site. To achieve this, the system will actively schedule > 
30% of deferrable loads during peak solar generation hours. 
The solar energy utilization efficiency is constrained by the 
ratio of onsite consumption to total generated power: 
 
 
 
 

To achieve at least a 10% reduction in electricity cost 
compared to a baseline consumption pattern, the algorithm 
should output a schedule such that > 20% of deferrable​
loads shift their consumption to lower-cost Time-of-Use 
periods.  Grid electricity price forecasting will be used to 
optimize the load shifting, with a RMSE of <25%. 
 
 
 
 
The convergence time of the linear optimization algorithm 
must be within 20s, with a sub-optimality gap of <10% 
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(difference between true optima and value returned by 
solver). To enforce this, an iteration limit will specify the 
maximum number of iterations the solver will perform. 
Each iteration involves processing constraints and variables 
to move closer to an optimal solution. Setting this limit 
helps prevent excessive computation time on particularly 
challenging optimization problems.  
 

B.​ Data Accuracy 
 
SmartWatt uses forecasts from Solcast API and 
Open-Meteo to provide real-time solar irradiance data, 
which will be used to estimate solar power generation with 
a MAPE accuracy of > 80%. Open-Meteo API will supply 
weather forecasts, including cloud cover, temperature, and 
solar radiation levels, to refine solar power generation 
predictions.  
 
 
 

Accurate measurement of power consumption across loads 
is critical to the optimization and control of energy usage. 
The INA226 power sensor must measure current and power 
within 98% accuracy. According to the datasheet [8], 
measurement error is within ±0.1% to ±0.5%.  
 

C.​ System Monitoring and Responsiveness 

To provide users accurate and timely insights about which 
appliances are consuming the most power, SmartWatt 
features a dashboard with real-time power consumption 
updates. The dashboard must update power consumption 
data every 5 minutes. To achieve this, the sensors will 
sample data to ESP32 at a frequency of 1 Hz, with an 
averaging window of 5 minutes before being sent to the 
backend.​
​
A responsive and low-latency dashboard enhances the user 
experience. The system must achieve a dashboard response 
latency of ≤3s when loading real-time data. Here is the 
end-to-end latency breakdown:  

●​ ESP32 ↔ Django Backend: Network latency ≤100 
ms, request processing ≤200 ms. 

●​ Backend ↔ Database: Query execution time ≤500 
ms 

●​ Backend ↔ Frontend: API response ≤200 ms, 
JSON parsing ≤100 ms 

 D. Load Simulation and Hardware Performance 

To accurately replicate household consumption behavior in 
a scaled prototype, the system must operate within realistic 
power ranges. The ESP32 microcontroller is capable of 
operating within a 3.3V-12V range, drawing up to 600mA 
current as needed. This falls in the range of 0.1W to 5W. In 
the real world, most appliances operate between 0.1 kW to 
5 kW, so we will use a scaling factor of 1/1000 to simulate 

loads. 5, 1W solar panels will be used for power generation 
(which can be connected in series to provide up to 5W). 
Internal resistive elements (100mΩ - 10Ω) such as LEDs 
and PWM fans will be used to simulate power draw.   

During testing, we experimented with 1.5–3V 15,000 RPM 
DC motors to simulate variable appliance loads. However, 
we found that these motors were power-hungry and did not 
adhere to the expected wattage constraints for our scaled 
model. Despite their low voltage ratings, they drew high 
instantaneous currents - exceeding the safe operating range 
of our ESP32 microcontroller and bypassing the intended 
0.1W–5W power envelope that was designed to mimic 
household appliances at a 1:1000 scale. 

V. DESIGN TRADE STUDIES 

A.​ Optimization Algorithms for Scheduling Loads 
The optimization module schedules deferrable loads 
throughout the day and balances solar and grid power. Our 
approach uses linear programming (LP) and model 
predictive control (MPC). Decision variables record each 
time step and load (load_on[t, load] = 1 if on, 0 if off), 
continuous variables for grid power (positive for 
consumption, negative for injection), and battery 
charge/discharge powers. MPC uses a model to predict 
future behavior over a finite horizon. The algorithm has a 
prediction horizon which looks ahead to account for 
time-varying factors like energy prices, solar generation, 
and load demand, rolling optimization that adapts to 
real-time changes in load consumption patterns, ensuring 
the schedule remains optimal as conditions evolve. We 
chose this approach as it is crucial for energy systems where 
electricity prices may follow time-of-use tariffs, and solar 
power availability depends on weather and time. 

 
Alternative 1 : Stochastic Dynamic Programming is an 
optimization method that models the energy management 
problem as a Markov Decision Process, where the state 
variables are current time, battery state of charge, and 
deferrable load status. Decision variables are actions such 
as turning loads on/off or charging/discharging the battery, 
with transition probabilities accounting for randomness in 
solar generation, load demand, and energy prices. This 
approach is not used by us because SDP requires solving a 
Bellman equation iteratively, which is computationally 
intensive, especially with continuous state and action 
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spaces. In our design requirement, we have that the 
algorithm should converge within 20s, which is not feasible 
with SDP. Additionally, SDP relies on well-defined 
probabilistic models of solar generation, energy prices, and 
load demand. In real-world scenarios, these distributions are 
hard to estimate accurately, leading to suboptimal decisions 
 
Alternative 2: Rule Based Programming which consists of 
predefined logic and thresholds for decision-making. 
Instead of solving an optimization problem, a rule-based 
system follows if-then conditions based on real-time sensor 
inputs. For example, if solar power is greater than a set 
threshold, then turn on deferrable loads. Or if grid prices 
exceed a predefined cost, then discharge the battery to 
supply loads. We did not choose this method because the 
system only reacts to current conditions, not future forecasts 
(e.g., tomorrow’s energy prices or solar generation). Also 
the rules are hardcoded, so  if a rule turns on appliances 
whenever solar power is high, it might still do so even if 
tomorrow’s electricity price is cheaper, leading to higher 
costs, suboptimal. 

B.​ Solar and Grid Price Forecasting Models 
We initially considered using LSTM networks for 
forecasting grid electricity prices due to their ability to 
capture long-term dependencies and memorize temporal 
trends in sequential data. LSTMs are well-suited for 
learning patterns like daily or weekly price cycles and 
responding to lagged effects. However, we found that 
LSTMs required extensive training data (more than 3 
weeks), were sensitive to tuning, and had long inference 
times—making them less practical for frequent, lightweight 
retraining in our real-time pipeline. We pivoted to 
XGBoost, which handled time-based features (lagged 
prices, hour of day, day of week) effectively. It trained 
faster, generalized well with less data, and provided more 
interpretable feature importance, making it a better fit for 
SmartWatt’s retraining and deployment requirements. Here 
is a trade-offs table describing the pros and cons of different 
forecasting models 
 

Model Overfitting 
Risk 

Accuracy Limitation 

XGBoost Low Medium-high, 
Balances feature 

selection and 
regularization 

High memory usage 

 
ElasticNet 
(Skforest 
Autoregre

ssive) 

Low Medium-high, 
Balances feature 

selection and 
regularization 

Requires tuning  L1 
(Lasso), L2 (Ridge) 
ratios, struggle with 

nonlinear 
relationships 

LSTM High High for 
capturing 
long-term 

Needs large training 
datasets, memorizing 

noise instead of 

dependencies trends 

ARIMA Moderate Medium, good 
for short-term 

time-series 

Cannot capture 
sudden price/demand 

fluctuations 

Since grid prices and solar power do not exhibit extreme 
fluctuations, we do not need to train nonlinear models such 
as neural networks which are computationally intensive.  

C.​ MCU Platform for Embedded Control 
The control subsystem automates appliance switching based 
on the generated optimization schedule, requiring a device 
with I/O capabilities, communication, and processing for 
executing commands. ESPHome simplifies device setup 
and control by allowing us to define device configurations 
using YAML files which are compiled to firmware and 
flashed onto the ESP MCU. ESP32 has great peripheral 
support and works with GPIO, I2C, UART, ADC, and 
PWM for flexible sensor and actuator control. However, we 
will be using RPi5 to actually host and run our optimization 
models. ESP32 has only a dual core , 520 KB of SRAM and 
limited flash storage which are too small to process 
compressed ML models efficiently, slowing down Wi-Fi 
communication, sensor polling. Bi-directional 
communication of the switching commands between RPi5 
and ESP32 done through MQTT/Bluetooth BLE (wireless) 
 

Attributes ESP32 ESP8266 Arduino MKR 
Wifi 1010 

TI CC3220 
 

Connectivity WiFi, 
Bluetooth, 
native 
MQTT, 
API, 
UART, I2C 

No Bluetooth, 
WiFi, native 
MQTT, API, 
UART ,I2C 

BLE, 
WiFi,MQTT, 
UART, I2C 

BLE, 
WiFi,MQT, 
UART, I2C 

API Support ESPHome 
API 

ESPHome API REST/WebSocket REST/Web
Sockets 

Processing 
Power 

Dual-core 
240 MHz 

Single-core 
80/160 MHz 

32-bit ARM 
Cortex-M0+ 
 

32-bit 
ARM 
Cortex-M4 

GPIO 34 17 22 27 

ESPHome 
Compatibility 

Full 
Support 

Full Support Custom Firmware 
(no native 
support) 

Custom 
Firmware 
(no native 
support) 

RAM 320 KB 
SRAM, 
4MB Flash 

80 KB RAM, 
512 KB to 4MB 
Flash 

32 KB SRAM, 
256 KB Flash 

256 KB 
SRAM, 1 
MB Flash 

 

D.​ Software Stack (Frontend + Backend) 
We chose a FastAPI+ React + Python stack. FastAPI 
provides low-latency API responses and asynchronous 
request handling, making it ideal for real-time interactions 
like scheduling updates, sensor polling and solar forecast 
queries. Initially, we considered using Django due to its 
built-in database and ORM, but found it to be heavier and 
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less suited to building a fast, lightweight API. It also 
supports real-time data streaming using WebSockets, 
making it suitable for handling real-time power monitoring 
data from devices. On the frontend, React was chosen for its 
component-based architecture, supporting WebSockets and 
API polling, making it ideal for building dynamic 
dashboards with real-time data visualization. React enables 
a highly interactive user experience.​
​
​ ​ E. Chatbot Interface System 
 
We tested several LLMs for SmartWatt’s chatbot, including 
Meta’s LLaMA2 and Google’s Gemma, but found their 
responses to be inconsistent and too verbose, with higher 
latency and lower relevance in a home energy context. To 
improve user experience, we added a natural language 
interface to guide and clarify queries. Ultimately, we chose 
OpenAI’s GPT-4 via API, which offered more reliable, 
concise, and accurate responses—with roughly 20–40% 
better accuracy and latency around 750 ms. This ensured 
smooth, interpretable answers to user questions about 
energy savings, device schedules, and solar forecasts. 

 VI. SYSTEM IMPLEMENTATION 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

​  

 

Figure 5: End to End Control Flow Diagram 
 
The flowchart depicts the end-to-end control flow of the 
entire system. The ESP32 receives appliance schedules and 
toggles relay switches connected to appliances such as 
PWM fans, LEDs, battery packs and other DC loads (3- 12 
V, 0.1W to 5W, 0.1Ω to 100Ω) via GPIO. We chose lower 
wattage resistive elements, instead of directly controlling 
full-scale home appliances that require high-voltage AC 
power and a wall socket connection. This decision was 
made based on public safety considerations. High-power 
inductive loads (compressors, large motors) cause voltage 
spikes and electromagnetic interference that can damage 
ESP32 circuits. 
 

 
Figure 5 : Device Control setup with ESP32, INA226 power sensors, solar 
input, and a PWM fan load. 
 
We used relays in the circuit to control the appliances using 
the low-voltage digital outputs of the ESP32. Since the 
ESP32 operates at just 3.3 volts, it cannot directly switch 
devices which require higher voltages and significant 
current. Relays act as electrically isolated switches, 
allowing the microcontroller to safely toggle power to these 
appliances without any direct electrical connection. This 
provides protection against surges or short circuits, ensuring 
the ESP32 isn’t damaged by power fluctuations. 
 
The core scheduling and optimization logic remains the 
same whether controlling small DC loads or AC appliances. 
Once the optimization model is validated, the system can be 
scaled to real appliances using relay switches, allowing 
integration with smart plugs and energy meters. We have 
programmable relay switches which are electronic on/off 
controllers, enabling the ESP to efficiently manage devices 
based on load forecasts and energy availability. 
Additionally, the ESP32 continuously polls sensors such as 
the INA 226 power sensors over I2C, GPIO, transmitting 
real-time data back to RPi5 for optimization feedback and 
updates to the backend. This setup ensures stable appliance 
switching and low-latency (<=1.5s) communication. 
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A.​ Forecasting Module Implementation 

1. Solar Power Forecasting 

●​ Open-Meteo API [12]: Uses 
latitude/longitude-based weather forecasts (solar 
irradiance which is then converted to PV power 
using following formula) 

●​ Solcast API: Provides PV generation predictions. 
●​ Persistence Model: Updates forecasts with 

real-time PV production data. 

Figure 6 : Solar Forecast predicted by XGBoost, mapping OpenMeteo 
weather features 
 
2. Grid Price Forecasting 
 
We used the Nordpool Integration [2] which provides spot 
market electricity prices for regions in Europe. We could 
not find a good API providing real-time grid prices for the 
U.S. market, so we opted for Nordpool which is 
open-source, and integrates with Home Assistant. 

Figure 7 : Grid Price Forecast predicted by XGBoost, mapping OpenMeteo 
weather features to time of day 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: Forecasts rendered on the dashboard 

B.​ Optimization Framework 
We formulated the energy management problem as a linear 
optimization problem, with linear objective function and 
affine constraints. The main advantage of LP is that if the 
problem is well posed and the region of feasible possible 
solutions is convex, then a solution is guaranteed and 
solving times are usually fast when compared to other 
techniques such as dynamic programming, MDPs or 
simplex method. However, if a problem is too big (too 
many objective functions/ constraints) or it is not 
converging fast enough to a solution, memory limits can be 
exceeded. 
 
 
 
 
 
Objective Function 
 
 
 
 

 
 
The constraints ensure that self-consumed power at any 
given time step cannot exceed the available solar power, 
and the self-consumed power cannot exceed the total power 
demand (If solar power generation is high, 
self-consumption is limited by demand, if load is high, 
self-consumption is limited by solar power available) 
 
2. The second objective function aims to model how much 
power is drawn from the grid and quantify costs​
​
 
 
 
 
where is the total period of optimization (hrs),  is ∆

𝑜𝑝𝑡
∆

𝑡
timestep (hr),  (W) is the power drawn from 𝑃

𝑔𝑟𝑖𝑑, 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑
grid, is the cost of drawing power from the grid 𝑢𝑛𝑖𝑡

𝐿𝑜𝑎𝑑𝐶𝑜𝑠𝑡
($/KWh) 
 
Constraints 
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Power Balance Equation 

 
This follows from the conservation of energy.  It ensures 
that the sum of all power inflows and outflows is equal to 
zero, so that all energy produced, consumed, stored, or 
exchanged with the grid is accounted for.  
 
To actually solve the LP problem, we used solvers in PuLP, 
a Python library for linear programming. After testing 
several solvers, we chose PULP_CBC_CMD, which is 
PuLP’s default CBC (Coin-or branch and cut) solver. It 
provided a reliable balance between performance and 
compatibility. CBC was sufficient for our problem size and 
scheduling horizon, offering sub-second solve times with 
consistent results. Also sometimes GLPK and COIN_CMD 
which are other solvers occasionally failed to find a feasible 
solution, even when one clearly existed—under tight 
constraint conditions  
 
We also incorporated user defined priorities, so in the case 
where the user chose a high/low priority, the new objective 
function became 

 
subject to the same constraints as before. 

 
 
This flexibility allows users to tailor scheduling 
recommendations to their energy goals—whether they're 
aiming to save money, increase reliance on solar power 
instead of the grid, or find a balance between both. 
 

Figure 9 : SmartWatt’s scheduling interface 

C . Software (Frontend, Backend) 

SmartWatt is built on a FastAPI + Python + React stack. 
The FastAPI backend is responsible for handling API 
requests between Home Assistant, executing optimization 
algorithms, managing real-time data streaming (storing 
power monitoring data), and running machine learning 
models. The backend also exposed RESTful endpoints for 
the frontend, sensor data, control commands and 
optimization results, and connected with Home Assistant 
via HTTP and MQTT protocols. SmartWatt frontend 
subscribes to WebSocket updates from the backend and 
Home Assistant. This allows the dashboard to reflect live 
changes in power consumption, solar generation, and device 
status without requiring manual refreshes. For example, 
when the ESP32 sends updated energy readings or a device 
changes state, those changes are pushed instantly to the UI 
via WebSocket events. This ensures the user interface 
remains synchronized with the underlying system state.. 
WebSocket integration was essential for enabling a smooth 
user experience in a system that operates on continuous 
real-time data. 

For the frontend, we used React.js to create a responsive 
and interactive web interface. Users view real-time data 
from sensors, monitor device schedules, and manually 
override system-generated commands. The dashboard also 
visualized solar generation forecasts and price trends, 
allowing users to make informed decisions about appliance 
usage and tracking power consumption.​
​
Initially, we implemented on-demand inference by loading 
the ML model during each POST request. This caused 
severe latency spikes and server crashes under concurrent 
load, as multiple model loads overwhelmed memory and 
CPU resources. To address this, we shifted to a preloaded 
background model approach, initializing the model once at 
server startup and sharing it across requests. This improved 
performance — reducing inference latency from 10s to 
<600 ms and enabling reliable concurrent request handling. 

 
Figure 10 : Dashboard providing manual control over devices 
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Figure 11 : SmartWatt's analytics dashboard visualizes 
energy costs by device, category, and time of day 
 

 
 

Figure 12 : SmartWatt’s Chat Interface powered by OpenAI 

Figure 13 : Device Actuation Control Panel where users can switch on/off devices, schedule when to start and end devices, see 
device status (on/off) and see graphs of power consumption across devices 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 14: Model House displaying controllable electronic components 
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  VII. TEST, VERIFICATION AND VALIDATION 
A.​ Tests for Forecasting Models 

 
To validate the solar power forecasting model, we 
performed testing across 7 days of data and compared 
predicted solar output against real sensor readings from the 
solar panel. We achieved an average MAPE of 8.5% which 
is within our design requirement (MAPE <20%), RMSE of 
~0.15W. To evaluate the performance of our solar 
forecasting model fairly, we split our dataset into 80% 
training and 20% testing based on chronological order to 
preserve time-series integrity.  This ensured that the model 
was trained only on past data and evaluated on future, 
unseen data. 
 

 
Figure 15 : Testing Accuracy for Solar Forecast 

 
To test the grid price forecasting model, we trained on 
historical hourly price data and evaluated predictions 
against actual future prices from data obtained through 
NordPool API. After testing we found that the model had a 
MAPE of ~5% on average and RMSE of 0.0175 which is 
within our design requirements 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 16 : Testing Accuracy for Grid Price Forecast 
 

B.​ Tests for Optimization Algorithm 
 
We created a series of controlled test cases where grid 
prices, solar output, and device constraints were manually 
specified. Each test scenario involved devices with known 
durations, priorities, and energy demands. We then verified 
whether the linear programming solver produced schedules 

that satisfy all constraints—such as exact duration 
allocation and binary on/off values at each time slot. We 
also compared the pre-optimization cost (if a device ran 
naively during peak hours) to the post-optimization cost 
computed using our cost function. On average, we found 
that the daily energy cost was 17% lower when using 
SmartWatt’s optimization compared to a random schedule. 
This was because we found that about 24% of consumption 
of deferrable loads were moved to times of low grid prices 
and high solar availability. 
 
The algorithm converged across all test scenarios, even for 
large 48 slot intervals. Additionally, feasibility testing was 
done to ensure that constraints (device duration, grid/solar 
capacity limits) were never violated. Additionally, we stress 
tested the model against inputs under varying conditions, 
such as empty solar forecasts and flat and spiky grid prices, 
to make sure that the optimizer returns logical output. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 17: Training loss curve showing convergence of the solar 
forecasting model over 20 epochs, with loss decreasing steadily and 
stabilizing near zero 
 
We tested for the duality gap—the difference between the 
primal and dual objective values at convergence. In theory, 
a properly solved LP should yield a duality gap of zero, 
indicating strong duality and an optimal solution. We ran 
the optimizer across multiple device scheduling scenarios 
and logged both the primal and dual values using the 
solver's diagnostic output.  In all cases, the duality gap was 
within a negligible numerical tolerance ( )  confirming 10−6

that the solver reached optimality.  This validated that our 
LP formulation was well-posed and that the solver  was 
functioning correctly. 
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Figure 18 : Duality Gap Graph of the Optimizer 
 
We measured solver runtime to ensure that the optimization 
algorithm could operate in real time, even on 
resource-constrained devices. We recorded the time taken to 
compute optimal schedules across varying numbers of 
devices and time slots. For typical use cases involving 3–5 
devices over a 24-hour horizon (48 half-hour slots), the 
solver consistently produced results in <1s. This meets our 
design case requirements.  
 

 
Figure 19: Solver Time Convergence  
 

C.​ Tests for Device Monitoring &  Control 
 
To verify the accuracy and responsiveness of the 
ESP32-based power monitoring system, we measured how 
accurately the power sensors were logging power. The 
INA226 sensors were configured to sample power data 
continuously. Based on our calibration tests (measured V 
and I separately, then multiplied to get power and see how 
off that was from the data logged onto the dashboard), the 
measurement error remained within ±1%, satisfying the 
design specification for accuracy. 
 
To validate system reliability, we developed automated 
scripts to query backend API endpoints and confirm 
consistent data flow from the ESP32 to the dashboard. We 
also measured packet loss and transmission delays, both of 
which remained negligible under normal operating 
conditions. 
 
To validate the reliability of the device control interface, we 
developed a script that programmatically sent control 
commands to the backend API—such as turning devices on 
or off and updating schedules. The script logged each HTTP 
request, along with the corresponding timestamp, response 
code, and device state returned by the server. 

These logs allowed us to verify that all commands were 
executed within an average response time of under 200 
milliseconds, and that the server correctly propagated the 
new device states to the frontend via WebSocket updates. 
Additionally, this testing helped us confirm that the backend 
logic maintained state consistency and handled edge cases 
gracefully. The device control script thus served both as a 
stress test and a logging tool for ensuring robust API 
interactions. 

To evaluate the responsiveness of device control, we 
measured the actuation latency—the time between issuing a 
control command via the dashboard and the physical 
activation of the device. Using a stopwatch, we found that 
the average actuation latency was approximately 2s (the 
LEDs switched on/off in under 1s, the motors which had 
higher wattage took about 2s) under normal network 
conditions. This meets our design requirements. This 
latency includes API processing time, ESP32 command 
reception, and hardware switching delay. The system was 
also tested under Wi-Fi load to ensure performance stability, 
and no command failures or missed activations were 
observed. These results confirm that the system delivers 
near real-time actuation.​
​
D. User Satisfaction and User Friendliness​
We conducted a round of user testing with 6 participants 
who are energy aware. Testers were given common tasks 
such as checking their device power usage, adjusting 
optimization priorities, running the optimizer, and manually 
toggling devices through the dashboard. We observed their 
interactions and collected feedback on navigation clarity, 
responsiveness, and visual layout. Users gave a 7/10 on the 
scheduling understanding, 8/10 on feature usability and 
7/10 on UI Navigation. Common suggestions included 
improving tooltip explanations for optimization parameters 
and adding clearer indicators for real-time data refresh. 
Most users found the system intuitive and said they would 
use SmartWatt to monitor their energy usage. 

​
Figure 20 : User Satisfaction Survey Results​
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​ ​ VIII. PROJECT MANAGEMENT 

A.​ Schedule 
The original design schedule outlined a four-phase 

milestone plan: hardware prototyping, ML model 
development, backend integration, and dashboard interface. 
While the core structure remained intact, model training and 
hardware integration took longer than anticipated due to 
sensor calibration issues and API latency debugging, 
shifting optimization module testing by approximately one 
week. However, parallel progress on the dashboard and user 
testing allowed us to catch up by the final review stage. A 
detailed Gantt chart with milestone adjustments is provided 
on the final page of this report. 

B.​ Team Member Responsibilities 
Anya worked on the machine learning and optimization 

models, including forecasting models, REST API design, 
backend logic, and frontend dashboard development. She 
also handled device actuation and control via the ESP32 
and integration with Home Assistant. Maya focused on the 
hardware layer, setting up the Raspberry Pi, sourcing 
components, building the prototype power system, and 
wiring the components into the house. They also supported 
backend hardware integration and system testing. Erika 
took charge of physical demo construction, visual layout 
design, chatbot integration, and full-stack frontend/backend 
coordination. The division of tasks allowed us to meet 
overlapping milestones without bottlenecks, even when 
some components—such as hardware integration—took 
longer than originally planned. 

C.​ Bill of Materials and Budget​
 
We spent about $350 of our budget. Please refer to the Bill 
of Materials at the end of our report. 

D.​ TechSpark Usage  
We used the laser cutters in TechSpark for our model 

house, as well as the laser cutters in the IDeATe space in 
Hunt Library.​
 
E.         Risk Management 
 
We encountered several risks across all subsystem 
developments. In the ML Inference subsystem, a 
performance issue arose from loading trained models inside 
the FastAPI route handlers. This caused server crashes and 
latency spikes above 3 seconds under concurrent requests. 
To address this, we preloaded the models at server startup 
using FastAPI’s lifecycle hooks, reducing average inference 
time to <1s to meet the design requirement. We also 
implemented fallback logic to handle cases where the model 
or cache failed. Additionally, we found that errors in the 
solar and price forecasts could propagate into the 
optimization module, leading to unreliable device 
schedules. This was mitigated by introducing forecast 
smoothing and uncertainty buffers. During model training, 

our LSTM and CNN forecasters sometimes plateaued due 
to vanishing gradients, especially when predictions already 
closely matched real values. Initially, we added 
regularization terms and white noise perturbations to 
maintain learning dynamics. However, after the predictions 
were suboptimal, we pivoted to using XGBoost for our 
forecasting model. For the solar forecast, by feeding in 
recent cloud cover, irradiance, and precipitation forecasts 
from OpenMeteo, XGBoost produced more stable and 
interpretable solar output predictions.  
 
Additionally, closer to the final week, the router on Maya’s 
laptop stopped working. Relying on a laptop-generated 
hotspot led to intermittent dropouts between the Raspberry 
Pi and backend services, resulting in unreliable device 
control and data synchronization. To resolve this, we 
transitioned to a dedicated router to establish a more stable 
local network, while also conducting stress tests and 
keeping the old setup as a fallback in case of connectivity 
issues. On the Hardware side, integrating the ESP32, 
INA226 sensors, relays, and Raspberry Pi into the limited 
physical space of the demo house presented both spatial and 
wiring challenges. To reduce risk, we adopted a modular 
prototyping approach, building and validating each 
subsystem independently before integration. This helped 
isolate and fix electrical issues early. Also several relays 
had to be swapped out since they failed under sustained 
inductive loads from the motors.  
 
Within the Backend and API layer, performance degraded 
when users made concurrent optimization requests or when 
the Matplotlib charts were generated on demand. Chart 
rendering added ~400 ms of latency per user. We resolved 
this by precomputing figures in the background and caching 
results.  
 
Finally, to manage Team and Schedule risk, we distributed 
responsibilities across subsystems. When hardware delays 
occurred, other team members progressed on independent 
parallel tasks. The division allowed us to recover from 
unexpected setbacks and maintain the timeline. 
 

 IX. ETHICAL ISSUES 
While SmartWatt aims to empower users with real-time 
energy optimization and sustainability insights, several 
ethical considerations arise in privacy and public safety. 
 
A core feature of our system is a personalized chatbot 
assistant that helps users understand their energy usage, 
recommend schedule changes, and explain optimization 
outcomes in natural language. However, this level of 
personalization introduces privacy risks. The chatbot 
interacts with historical device usage patterns, forecasted 
behaviors, and potentially sensitive data (e.g., routines 
inferred from load consumption schedules). If improperly 
secured or logged, this data could be misused or accessed 
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by unauthorized actors. To mitigate this, we ensured that all 
user interactions are processed locally or through 
authenticated APIs, and no personal identifiers are stored 
with logs. Long-term deployments should consider 
incorporating encryption, role-based access control, and 
transparent data policies to ensure user trust.​
​
Another ethical concern involves algorithmic 
decision-making, particularly in how our optimization 
system balances cost-saving against comfort or fairness. 
Edge cases—such as unexpected solar drop-offs or 
inaccurate forecasts—can lead the system to schedule 
essential devices at inconvenient times or delay operation 
entirely. This could disproportionately affect users with 
strict routines, accessibility needs, or less flexibility in 
appliance use. For example, someone relying on a medical 
device or needing consistent hot water might be negatively 
impacted if their device is deprioritized due to cost 
considerations. We addressed this by allowing users to set 
strict scheduling constraints and override optimization 
preferences. Still, further refinement of the optimization 
engine to prioritize equity, not just efficiency, would be 
essential in broader deployments. 
 
SmartWatt also raises broader environmental ethical 
considerations. While its core mission aligns with reducing 
carbon emissions by shifting load to cleaner energy 
windows, there's a risk of unintentionally increasing grid 
strain if poorly scheduled or scaled across many users 
without grid coordination. To mitigate this, we designed the 
system to prioritize solar self-consumption and support 
demand flattening, not just cost minimization. In the future, 
integrating carbon intensity signals into the objective 
function could align optimization with environmental goals. 
 
From a public safety and welfare perspective, automation of 
high-power devices (like HVACs, water heaters, or EV 
chargers) poses potential risks if optimization overrides 
essential usage. Edge cases—such as a misforecasted solar 
drop could delay device activation or cluster schedules, 
inadvertently disrupting daily routines or, in extreme cases, 
endangering individuals who rely on consistent access (e.g., 
for medical or mobility devices). To address this, we allow 
users to set non-negotiable constraints (e.g., minimum run 
windows) and manually override optimization when 
needed. 
 
Lastly, over-automation risk must be acknowledged. As 
users come to rely on SmartWatt’s recommendations, there's 
potential for overdependence or reduced visibility into how 
decisions are made. If a model error occurs or a system fails 
silently, users may miss critical issues. To mitigate this, we 
built transparency into the dashboard—allowing users to 
see forecasted prices, solar output, and optimized decisions 
with confidence scores—so they can override or inspect 
results as needed. 

X. RELATED WORK 
Google Nest has played a significant role in shaping 

smart home energy solutions with products like Nest Renew 
and the Nest Thermostat [13]. Nest Renew, launched in 
2021, optimizes household energy usage by shifting 
consumption to cleaner energy periods through its Energy 
Shift feature. Additionally, Savings Finder continuously 
analyzes user habits to recommend energy-efficient settings. 
The Nest Thermostat, redesigned for affordability and ease 
of use, incorporates smart scheduling and HVAC 
monitoring, making energy efficiency more accessible to a 
broader audience. These developments highlight Google’s 
commitment to integrating AI-driven automation into 
household energy management. 
 
Academic projects (OpenEnergyMonitor [18], Home 
Assistant’s Energy Dashboard) offer strong foundations for 
energy data collection and visualization. However, they 
often lack machine learning–driven forecasting and 
optimization or require manual configuration of 
automations. Our project extends these ideas by adding 
real-time LP-based scheduling, personalized chatbot 
interaction, and integration of solar and price forecasting.​
​
Tesla’s Powerwall enables homes to store excess solar 
energy for later use, reducing reliance on the grid during 
peak hours. Startups like Span and Sense are innovating 
with smart electrical panels and real-time energy 
monitoring, allowing users to track and control their energy 
consumption at the circuit level. Additionally, academic 
research in edge computing and IoT-based home automation 
has explored decentralized control systems that optimize 
energy use with minimal latency. These advancements 
collectively demonstrate a shift toward intelligent, 
self-regulating home energy ecosystems, paving the way for 
more sustainable and cost-effective living environments. 

XI. SUMMARY 

Our system successfully met the majority of the design 
specifications laid out at the beginning of the project. We 
achieved reliable real-time power monitoring with <2% 
sensor error, functional device control with sub-200 ms 
actuation latency, and optimization algorithms that 
consistently reduced energy cost by 20%. Additionally, the 
ML forecasting components achieved acceptable accuracy 
for both solar output and grid price prediction, enabling 
effective schedule generation.  
Together, these components formed a tightly integrated 
system that responded in real time to user inputs, sensor 
data, and forecasted conditions—delivering to the user 
transparency over their energy consumption, improved 
control over their home energy use and cost savings. 
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Future Work 
 
To improve system robustness and scalability, several 
extensions can be made. Refining the cost function to 
include user comfort and usage continuity can produce 
more intuitive, user-friendly schedules. Adaptive learning 
can be implemented to retrain forecast models on rolling 
data, improving long-term accuracy. Parallelizing solver 
execution and improving backend caching would reduce 
latency and improve performance under load. The system 
can also be extended to support battery, wind, and 
geothermal power, enabling broader renewable energy 
integration. Finally, developing a mobile app would be 
useful since most users use phones to remotely control 
appliances and view their power consumption data. 

Lessons Learned 
Integration of all the subsystems was challenging, but 
taught us how to effectively synchronize hardware with 
software. Stress testing was good for diagnosing failures 
and improving stability. Through iterative testing and user 
feedback, we gained valuable experience in user-centered 
design—ensuring transparency, manual override, and 
real-time feedback were central to the interface. We learned 
that design modularization is essential for achieving parallel 
development, maintaining steady progress, and ensuring 
effective collaboration across subsystems. Identifying risks 
early and designing for safe failure modes and redundancy 
is important. ​
 
GLOSSARY OF ACRONYMS 
MQTT – Message Queuing Telemetry Transport 
OBD – On-Board Diagnostics 
RPi – Raspberry Pi  
GPIO – General Purpose Input-Output 
TOU :  Time-of-Use Pricing 
RMSE: Root Mean Square Error 
MAPE: Mean Average Percentage Error 
API: Application Programming Interface 
REST: Representational State Transfer 
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