
Use Case / Application

SmartWatt
Studies show that 35% of home 
energy consumption in the US is 

wasted energy [1]

Energy demand is increasing, 
and in energy supply is now 
struggling to keep up

https://majorenergy.com/why-eliminating-energy-waste-should-be-a-resolution-for-everyone/


Quantitative Design Requirements
Use Case Requirement Design Requirement

≥ 75% of solar panel energy consumed onsite ≥ 30% of deferrable loads are scheduled during peak solar generation 
hours.

≥ 10% reduction in electricity bills RMSE <25% for grid price forecasting

≥20% load shifting to lower-cost Time-of-use (TOU) periods

Dashboard updated with power consumption 
data every 5 minutes

ESP32 sensors sampling at 1 Hz, averaged over 5 minutes

Power sensor should measure current and 
power within 98% of actual reading.

INA226, error of ±0.1% - ±0.5% (max) for current and power 
measurements

Actuate device (user can schedule devices to 
switch on/off) with 2s delay

Fast API POST request latency < 500ms
Time taken for ESP32 to receive & trigger on MQTT = 1s



Solution Architecture

JSON

POST

REST API
Ethical Considerations:
● Promotes low-cost, 

low-emission energy use

● Safe automation adaptable 
to diverse energy practices

● Easy to use, even for those 
with limited tech literacy or 
access



Dashboard



Complete Solution - Optimization
Linear Programming Solvers - 
PULP_CBC_CMD and GLPK

Objective Function
Minimize total operational cost across 
all eligible time slots

Constraints

User defined priorities



Complete Solution - Device Control

http://www.youtube.com/watch?v=lwfSNxuyoHU


Design Tradeoffs
Proposed Solution Final Solution

Meta’s LLaMA 2 / Google’s Gemma
- Inconsistent answers, long latency

- interface added to improve interpretability and 
allow natural language queries

OpenAI GPT-4 via API
- More reliable, concise, and relevant

- ~20-40% better accuracy, ~750 ms latency

Direct GPIO actuation via ESP32 polling
- Required custom firmware and exposed bugs

REST-based FastAPI control 
- Easier debugging, centralized management

- ~180ms actuation latency

On-demand ML inference during POST requests
- Crashed server under load

Preloaded background ML model
- Reduced inference latency from 3.2s → 620ms

Manual scheduling inputs (start/end only)
- Not intuitive, poor user adoption

Priority-based LP optimization
- Adaptive to constraints and user goals
- Higher user satisfaction (↑ adherence)



Testing & Verification - ML Forecasts
Solar Power Forecast vs Actual

● Model complexity vs latency: 
○ Chose XGBoost for interpretability and fast inference (over LSTM/CNN + Transformer 

based regression models)

● Data availability vs accuracy: 
○ Trained on 4 days of history, rest of data used in testing & validation



Testing & Verification - Optimization Performance
● Algorithm converged across all test scenarios, even for large 48-slot 

scheduling windows (24 hours).
 

● Final solutions showed a near zero duality gap, confirming that optimal 
solutions were reached with no discrepancy between the primal and dual 
problems.

● Feasibility Testing performed to ensure constraints (device duration, 
grid/solar capacity limits) were never violated 

and 
Stress tested with empty solar forecasts or flat grid prices, injected 
artificial price spikes.



Testing & Verification - Optimization Latency
● Convergence Time over Epochs: 

○ LP optimization for Fan, LED, and PWM Fan 2 
devices consistently converges within 15–20 
epochs.

● Wall Clock Time: 

○ Algorithm converged in under 1s for most test 
scenarios, meeting use case requirements for 
device scheduling.

● Lightweight LP formulation avoids large overhead even 
when adding more devices or priority constraints.



Functionality Requirement Test Input Test Output

Device Control + Actuation 
Latency

2s delay
POST request to endpoint with 
device action and scheduling

All control signals result in correct 
ON/OFF state. The latency is 1.4s

Backend Data Fetching 
Accuracy - Power readings 

from INA226 sensor

Measure current and 
power within 98% of 

actual reading.

Fetch voltage, current, and 
power from INA226 sensor

0.5% power calibration error (from 
measured V and I values)

Testing & Verification

Lessons Learned 

● Stress Testing: Running simulations with flat data and random spikes helped catch edge cases in the scheduling logic.

● API Logging Is a Must-Have: Debugging device scheduling is challenging! Request/response logging helped identify 

malformed payloads and latency bottlenecks.

● Asynchronous Tasks Improve Responsiveness

Background task queuing (via FastAPI) was needed to avoid blocking main threads during optimization and inference. We 

learned that synchronous execution caused UI freezes and slower response to user actions.



Project Management
Anya: 
● Optimization+ML
● Backend + Frontend
● Dashboard
● Device Control

Maya: 
● Home Circuitry
● Setup RPi Network

Erika: 
● Demo Home 

Construction
● Chatbot
● Web App Front-End / 

Back-End Integration


