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SMARTWATT

Product Pitch System Description

For homeowners with solar panels, SmartWatt cuts peak-time * Electrical Components: Appliances connected via ESP32 for remote

electricity costs by up to 15% in high-load scenarios and control from the dashboard.

improves solar self-consumption by ~30% compared to manual ° Sensors: _Power, voltage and C_urrent sensors collect real-time
scheduling. The system uses linear programming to generate ~ consumption data for each device.
daily appliance usage schedules that minimize power expenses ¢ Home Assistant: Local controller and data aggregator, interfacing with

while meeting user-defined constraints. A web-based low both the sensors and devices via MQTT

latency Ul dashboard provides real-time energy data and user Backend (FastAPIl + Python + OpenAl):

controls. The frontend displays appliance-level insights, » Host linear programming optimizer that schedules appliance operations tc
including usage trends, solar power contribution, and minimize cost based on solar and grid prices.

personalized recommendations for optimal on/off times. » Runs a regression ML model for forecasting solar generation and

dynamic electricity pricing from the grid.
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