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Abstract—Visually impaired pedestrians have diffi-
culty crossing streets, especially when crosswalks lack
accessible pedestrian signals such as audible walk in-
dications. The Self-Driving Human system is a chest
harness equipped with cameras and other modules to
assist visually impaired pedestrians by alerting them
to changes in the walk signal and avoid obstacles in
the crosswalk, allowing them to cross streets safely and
confidently.
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walk, Ergonomic Design, GPS, Image Classifica-
tion, Machine Learning, Navigation, Object Detec-
tion, Pedestrian, Power Supply, Real-Time Feedback,
ResNet Model, Safety, Visually Impaired, Walk Sign
Detection, YOLOv12 Model

1 INTRODUCTION

Navigating urban environments presents a significant
challenge for visually impaired pedestrians. Traditional
aids such as canes and guide dogs offer some assistance, but
they do not always provide sufficient situational awareness,
particularly when crossing streets. Many crosswalks lack
accessible signals, and obstacles like debris or cars can fur-
ther increase risks. As a result, there is a critical need for
a solution that enhances safety and autonomy for visually
impaired individuals when crossing roads.

Our proposed solution is a chest-worn device that lever-
ages real-time visual-to-audio guidance to assist users in
safely navigating crosswalks. By detecting ”WALK” and
"DON’T WALK?” signals, monitoring the user’s alignment
within the crosswalk, and alerting them to unexpected ob-
stacles, this device enables visually impaired pedestrians
to navigate crosswalks with higher independence and con-
fidence.

Current assistive technologies, such as tactile paving
and auditory signals at crosswalks, are often inconsistent
and unavailable in many locations. Mobile applications
with GPS-based navigation offer limited real-time environ-
mental awareness. In contrast, our approach integrates
a high-resolution camera, an inertial measurement unit
(IMU), and real-time machine learning (ML) processing on
a Jetson Orin Nano to deliver precise, immediate guidance.
This method eliminates reliance on external infrastructure,
ensuring usability across various environments. The pri-
mary goal of this project is to create a reliable, responsive,
and user-friendly system that significantly improves pedes-
trian safety for the visually impaired.

2 USE-CASE REQUIREMENTS

To ensure the system effectively aids visually impaired
pedestrians in crossing streets safely, the following use
case requirements have been established with public health,
safety, and welfare, as well as global, cultural, social, envi-
ronmental, and economic factors considerations in mind:

1. Scope and camera speed of walk sign and ob-
stacle detection: The chest harness should be able
to detect walk signs and crosswalk obstacles in a 105°
field of view at 30 frames per second. This ensures
that the system can process visual data in as close
to real-time as possible while still being integrated
into a mobile device, providing accurate and timely
guidance to the user even in dynamic urban environ-
ments.

2. Crosswalk deviation angle: The system should
be able to keep the user from deviating more than
45° from the line of the crosswalk. This ensures that
the user can safely cross the street without wandering
into the path of stopped cars.

3. Device battery life: The chest harness should be
able to last at least 2 hours on battery. This ensures
that users can wear it without frequent recharging,
making it suitable for daily commutes and extended
outdoor use. The system’s power consumption must
be optimized to balance performance and efficiency,
and users do not have to worry about the chest har-
ness dying while walking.

4. Accuracy of walk sign classification per frame:
The system must correctly classify the ”WALK?” sig-
nal with an Area Under the Receiver Operating Char-
acteristic Curve (AUROC) of at least 0.9 to ensure
reliable decision-making. This accuracy is calcu-
lated per frame input passed into the object detec-
tion model, and was chosen to be a high accuracy to
maximize pedestrian safety.

5. Accuracy of walk sign classification over 5
frames: The probability of misclassifying the walk
signal over five consecutive frames should be less than
1%. This accuracy is measured by taking a majority
vote over the 5 predictions, and was chosen to be as
high as possible to both ensure user safety and also
mask any false positives from a single frame’s out-
put. Each frame is sampled after the previous frame
is processed by the image classification model.

6. Time to output prediction: The system must pro-
duce an auditory walk signal indication within 3 sec-



18-500 Design Review Report — William Shaw, Max Tang, Andrew Wang — 28 February 2025 Page 2 of 19

onds of the signal changing in the real world. This
time includes all model inference time and producing
the audio. This requirement was chosen to give the
image classification model ample time to process 5
frames, but is also fast enough to give the user time
to cross the street at a reasonable speed. Real walk
signals often display the "WALK” signal for 3-5 sec-
onds.

7. Accuracy of crosswalk object detection model:
The model should detect obstacles in the user’s path
with at least 90% accuracy, reducing risks from trip-
ping over obstacles or bumping into cars. The de-
tection system must function effectively in various
environmental conditions, including low-light scenar-
ios and crowded urban areas. It should also be able
to distinguish between static obstacles that the user
could collide with and dynamic objects such as other
walking pedestrians that might not actually impede
the user’s path.

8. Clarity and volume of user feedback: The feed-
back provided as a result of the crosswalk obsta-
cle detection model should be clear and instructive
enough to help the user avoid obstacles. This metric
is measured by conducting user surveys with visually
impaired people and collecting their ratings on vari-
ous instructions, allowing us to create a system that
caters to their specific needs. The volume should also
not mask the environment so that users can still be
aware of their surroundings.

9. Ergonomic Design and Comfort: Both the
chest harness and external battery pack should be
lightweight and balanced to make sure that prolonged
usage is not uncomfortable or straining for the user.
This includes chest harness padding and adjustable
straps for different body proportions, and earbuds
that are comfortable.

3 ARCHITECTURE AND/OR
PRINCIPLE OF OPERATION

The Self-Driving Human provides navigation assistance
by integrating computer vision, object detection, IMU-
based heading tracking, and real-time audio feedback. As
such, the system architecture requires a mix of hardware
and software components. These are combined to detect
walk signs, track user alignment to a crosswalk, and pro-
vide audio cues for navigation.

Figure 1: Diagram of system.

Hardware Architecture:

1. Jetson Orin Nano: The processing unit that runs

our ML models and code for walk sign classification,
object detection, and crosswalk alignment.

. Camera Module (IMX219): The camera used to

capture real-time video data. This data is fed into
our ML models to detect walk signs and obstacles.
Our model has a wide FOV of 105°(D) and supports
multiple resolution/framerate combinations, though
we are currently using 1280x720p@30fps.

. IMU Sensor (BNOO055): 9-DOF sensor with a

MEMS accelerometer, magnetometer, and gyroscope.
Allows us to get the absolute orientation of the user
to determine their heading to + 2 degrees even when
stationary. This is used for our crosswalk alignment.

. Headphones: We had two options for types of head-

phones: on-ear and bone conducting. From an imple-
mentation standpoint, both function essentially the
same. However, since on-ear headphones may limit
how much a user can hear from their surrounding
and reduce their spatial awareness, bone-conducting
headphones would help increase safety. As such,
we chose to use the wireless AfterShokz OpenMove
(bone-conducting) headphones.

. Power Supply: We used a 24,000mAh powerbank.

To supply the required power to the Jetson Orin
Nano, we use a USB-C PD to 15V 5A DC Converter.
This allows us to use a standard power bank, rather
than using a more niche DC power bank.

Software Architecture:
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1. Walk Sign Classification Subsystem: This sub-
system outputs a boolean ”Safe to Cross” signal
based on live video feed from camera. The video
data is processed with a ResNet-based classifier [2],
predicting whether or not each frame has a ”WALK”
or "DON’T WALK?” signal. If the classifier outputs 5
consecutive "WALK” detections, the control system
passes control to the next Navigation Subsystem.

2. Navigation Subsystem: This system outputs real-
time audio feedback to guide the user across the cross-
walk. It raises alerts if the user deviates > 45deg
from the intended path, or if an unexpected obstacle
on the sidewalk is detected.

3. Audio Manager: Cues from both of the subsystems
are passed into an Audio Manager, which can out-
put Text-To-Speech (TTS via pyttsx3) based cues or
simple audio alerts from an audio library. The Audio
Manager ensures that the most critical notification is
being played, ensuring the user’s safety. Audio cues
were user tested for clarity and ease of use.

Principle Of Operation:

The Self-Driving Human operates in two major soft-
ware phases. The Walk Sign Classification Phase and the
Navigation Phase. As implied, the Walk Sign Classifica-
tion Phase runs a ResNet model to classify the pedestrian
crossing light. There are three possible states: "WALK?”,
"DON’T WALK”, and "NONE”. For the system to detect
a valid crossing signal, five consecutive ”WALK” signals
need to be detected. Once this occurs, the system prompts
the user to begin walking. At this point, control is passed
to the Navigation Phase. At the start, a measurement is
taken for the estimated position of the crosswalk endpoint,
based on visual data data and IMU measurements. Then,
as the user is crossing the crosswalk, the IMU measure-
ments are used to ensure that the user stays aligned to the
desired path. Simultaneously, a YOLOv12 [5] model con-
tinuously monitors for unexpected obstacles in the path
of the user. Based on these, the Navigation Phase outputs
commands to the user, helping them to avoid obstacles and
stay on the sidewalk. Cues from both the Walk Sign Clas-
sification Phase and the Navigation Phase are sent to an
Audio Manager Process, which determines what audio cues
to play based on priority. Fig. 2 includes a block diagram
of this system.

3.1 Changes from Design Review Report

The primary design change since the design review was
the shift from a head-worn device to a chest-worn device.
The motivation for this decision was that users are more
likely to turn their head to face directions that are not
exactly the same direction as the one in which they are
walking in. Since the calculation of crosswalk deviation
relies on the user pointing the device at their destination,
then mounting the IMU sensor to their chest would result
in better deviation detection. Another change was that

we report deviations of more than 45°, rather than 20°.
We did so as we found that 20° was too narrow a value to
constitute a meaningful deviation from the crosswalk path.

4 DESIGN REQUIREMENTS

Each use-case requirement spawns a corresponding
technical design requirement. By meeting the following de-
sign requirements, the system ensures that it can likewise
satisfy the use-case requirements.

1. Scope and camera speed of walk sign and ob-
stacle detection: The camera must be able to cap-
ture video frames at a rate of 30 frames per second
and a resolution of 720p with a 105° field-of-view.
This frame rate is fast enough to keep up with the
model inference speed, while the resolution and field-
of-view is large enough to match the images in the
datasets used to train both the image classification
and object detection models.

2. Crosswalk deviation angle: The IMU sensor must
be accurate enough to detect variations in headings
with a granularity up to 1°. This accuracy is high
enough to allow the system to calculate the angle be-
tween the direction the user is facing and the end-
point.

3. Device battery life: The battery used to power the
system must provide at least 6,000 mAh. This is suf-
ficient to provide 2 hours of battery at the required
power to run the Jetson Orin Nano at the highest
performance setting, which is necessary during the
model inference phase. This calculation can be found
in Section 5.3.

4. Accuracy of walk sign classification per frame:
The walk sign classification system utilizes the
ResNet image classification model to classify the
“WALK” vs "DON’T WALK” vs "NONE” signal.
The model must achieve an AUROC of at least 0.9 on
the test dataset to ensure reliable decision-making.
The model is trained on a diverse dataset of cross-
walk signals under various lighting and weather con-
ditions. This ensures the model is robust enough for
real-world scenarios, balancing accuracy with compu-
tational feasibility while maximizing user safety.

5. Accuracy of walk sign classification over 5
frames: The model must correctly classify at least
90% of individual frames to ensure that the proba-
bility of 3/5 consecutive frames being misclassified is
< 1%. This condition is automatically met if the pre-
vious design requirement regarding the accuracy of a
single frame is satisfied. By sampling non-consecutive
frames, we can assume that each frame is independent
and that the number of incorrectly predicted frames
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Figure 2: The overall block diagram for The Self-Driving Human. Larger version can be found in Fig. 6.
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follows a binomial distribution:

P(X =k)= <Z> (0.1)%(0.9)>* (1)
Thus the probability of outputting an incorrect ma-
jority vote is P(X > 3) = P(X = 3) + P(X =
4) + P(X = 5) = 0.00856, which satisfies the require-
ment. This reduces the impact of individual frame
misclassifications, improving system robustness and
user trust in the guidance system.

6. Time to output prediction: The ResNet im-
age classification model must classify the walk sig-
nals with an inference latency of < 3 seconds for all
5 frames. This can be satisfied by quantizing the off-
the-shelf model and ensures that users receive timely
guidance, preventing delays that could impact safe
crossing decisions.

7. Accuracy of crosswalk object detection model:
The object detection model should also achieve a min-
imum accuracy of 90% in detecting obstacles in the
user’s path. The model is based on an off-the-shelf
YOLOvV12 architecture, fine-tuned using an online
dataset of various intersections and crosswalk envi-
ronments. The model should be able to differenti-
ate between static obstacles (ex. curbs, cars) and
dynamic obstacles (ex. other pedestrians). The de-
tection system should function effectively in crowded
urban environments where the number of dynamic
obstacles is high and in weather scenarios with poor
visibility.

8. Clarity and Volume of User Feedback: The
feedback produced by the crosswalk obstacle detec-
tion system should be clear, concise, and actionable.
The feedback should not obscure the user’s ability to
hear environmental sounds, such as approaching vehi-
cles or nearby pedestrians. Instructions were chosen
and recorded based on user study results.

9. Ergonomic Design and Comfort: The chest har-
ness, which includes the camera and microcontroller,
should weigh no more than 700 grams and have an
even weight distribution to prevent discomfort and
strain. The battery pack should not weigh more than
2 kg and should fit inside a fanny pack, which can
be worn comfortably around the user’s waist or slung
across their shoulder.

5 DESIGN TRADE STUDIES

5.1 ML Model Complexity and Inference
Latency
One of the primary design choices is the complexity

of the CNN-based architecture used for object detection
and walk sign classification. More complex models like

YOLO or ResNet models offer higher accuracy but come
with increased computation time, which can be problem-
atic for real-time pedestrian guidance. On the other hand,
lightweight models are faster and more power-efficient but
may sacrifice detection accuracy.

We consider that high-complexity models (ResNet,
YOLO) exhibit high accuracy in detecting walk signs un-
der diverse conditions, but notably have increased inference
time, potentially causing delays in user feedback. Addi-
tionally, we note that they have higher power consump-
tion, potentially reducing battery life. Lightweight models
(MobileNet SSD, Tiny-YOLO) exhibit comparatively low
latency and have lower computational requirements, mak-
ing them suitable for edge devices. However, their major
drawback is reduced accuracy, leading to potential misclas-
sification of walk signs, or incorrect detection of objects in
the road.

We determine that accuracy is of higher importance,
and so we decided to use a higher complexity model. How-
ever, we looked into methods to reduce the computational
burden, such as quantization or neural network pruning
to reduce the effective size of the model and preserve bat-
tery life while retaining good detection/classification per-
formance. In this way, we directly address the drawbacks of
using more complex, heavyweight models while benefiting
from the comparatively good performance.

5.2 On-Device vs Remote Inference

We considered the trade-off between processing the ob-
ject detection using on-device inference versus offloading
computations to a smartphone or cloud service.

On-device processing gives lower latency (enabling
quicker real-time predictions) and has no reliance on in-
ternet connectivity. The main drawback of this method is
that it is limited by the device’s computational power. Re-
mote processing (e.g.7 sending frames to a smartphone app
or cloud) can use more advanced models for improved ac-
curacy, and offload processing from the wearable, reducing
power consumption. However, this method introduces net-
work latency, which can delay user feedback and require an
active internet or Bluetooth connection. Ultimately, we de-
cided to use on-device processing due to real-time latency
constraints and the need for independence from external
connections. Additionally, this removes the extra variable
of implementing a potentially slow Bluetooth module, re-
moving unnecessary complexity from our project.

5.3 Processing Unit Selection

The Jetson Orin Nano must provide sufficient process-
ing power to run deep learning models in real time while
keeping power consumption manageable for wearable use.
The Jetson Orin Nano was selected over alternatives like
the Raspberry Pi 4 due to its superior computational per-
formance. While it consumes more power ( 15W vs. 5W
for Raspberry Pi 4), its GPU acceleration enables real-time
processing of ML models. We acknowledge that this choice
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comes with a higher energy consumption/power require-
ment, and plan to adapt our other software components to
accommodate this. Given that the power consumption is
now higher, we selected a 24,000mAh power bank to bal-
ance runtime ( 2 hours) and weight. The Jetson Orin Nano
draws 7-15W depending on power mode, and so our worst
case analysis is as follows:

(15W % 2hrs % 1000) /5V = 6,000m.Ah (2)

5.4 Input and Sensor Selection

The camera must provide a high enough resolution for
object detection and walk sign classification while main-
taining a sufficient frame rate for real-time inference. The
relationship between bandwidth (B), resolution (R), and
frame rate (F') can be modeled as

B=Rx«F (3)

The IMX219 (1080p @ 30fps) was chosen as a balance
between image clarity and real-time processing. Alterna-
tives like the IMX477 (12MP) offered higher resolution but
reduced frame rate. We believe that this camera offers the
best balance between frame rate, resolution, and user com-
fort to enable our ML models to give accurate feedback on
clear images to the user.

We determined that using the Google Maps API was
not necessary for navigation within the scope of our pro-
posed project, and so we decided to use an IMU sensor
(BNOO055) in order to provide orientation information to
our navigation module. In this way, we may ensure that
the user remains on course during the crossing period.

5.5 Audio Output

Audio latency is critical for real-time feedback and is
affected by the transmission method. We may represent
the relationship between latency (L), packet size (P), and
bandwidth (B) as

(4)

We determined that a Bluetooth connection would intro-
duce too many variables in audio feedback, such as connec-
tivity issues, potentially high bandwidth causing latency
saturation, and so the USB sound card was chosen over
Bluetooth due to lower latency and fewer connectivity is-
sues, despite requiring a wired connection. We do plan on
polling users on the comfort of needing a wired connection
to determine user satisfaction with this design choice.
Audio instructions provide clear, detailed guidance but
can be difficult to hear in noisy environments. Haptic feed-
back (e.g., vibrations) is more discreet and reliable in all
environments but may not convey complex information as
effectively as voice instructions. We decided to use audio
instructions out of interest for clarity and ease of under-
standing for the user, which are conveyed through on-ear
headphones as opposed to through a speaker. We debated
transmitting audio directly through a speaker as well, but

L=PxB

out of interest for audio clarity and ease of understanding
for the user, we decided to first test our headphone setup
in order to remove a possible source of difficulty for the
user. Once again, we poll the users on the benefits and
drawbacks of using audio feedback via on-ear headphones
as opposed to the other methods discussed.

6 SYSTEM IMPLEMENTATION

6.1 Hardware Implementation

The Jetson Orin Nano serves as the central processing
unit responsible for running our ML models. It handles the
computational load of image processing, walk sign classifi-
cation, and navigation tasks in real time. We reason that
it is capable of facilitating quick, real-time inference with
our trained ML models while being portable enough for the
user to comfortably carry. The IMX219 camera module is
responsible for capturing real-time video data. This cam-
era has a wide field of view (FOV) of 105° and supports
multiple resolution/frame rate combinations. Our imple-
mentation operates at a resolution of 1280x720 at 30fps,
which is a sufficiently high resolution for accurate obstacle
detection and classification of walk signs. Additionally, the
frame rate should be high enough to ensure that we are
surveying the surroundings at an appropriately frequent
rate. The BNOO055 IMU sensor we selected is a 9-degree-
of-freedom (DOF) sensor that includes an accelerometer,
magnetometer, and gyroscope. It provides absolute ori-
entation data with an accuracy of +2 degrees, even when
stationary. This sensor is essential for ensuring that the
user maintains the correct alignment while crossing the
street. With regards to audio feedback modality, we used
an on-ear bone conducting headphone that can connect
directly to our USB sound card, relaying audio feedback
clearly to the user. The system is powered by a 24,000mAh
power bank. A USB-C PD to 15V 5A DC converter is suffi-
cient to ensure the Jetson Orin Nano receives the necessary
power for continuous operation.

The harness itself underwent multiple variations until
we arrived at a version that looked aesthetic, was com-
fortable to wear for people of all builds, and adequately
protected the components from the environment.

6.2 Walk Sign Classification Subsystem

The walk sign classification subsystem is responsible for
detecting the “WALK” and “STOP” signals in real-time.
It utilizes a CNN-based ResNet classifier [6] trained to
achieve an AUROC of > 0.9 on a test set, which should
high reliability in real-world conditions. Additionally, we
enhance model robustness majority voting, where consec-
utive frame predictions are majority-voted over. Since at
least 90% of individual frames must be correctly classified,
this reduces the probability of five consecutive misclassifi-
cations to less than 1%, increasing user safety and trust in
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the system. Refer to Figure 3 for a flow chart detailing the
image collection and model output.

To meet real-time constraints, the model inference la-

tency must be < 3 seconds per frame. This ensures that
users receive timely “WALK” or “STOP” signals without
unnecessary delays. The classification results are continu-
ously monitored, and once five consecutive frames indicate
a “WALK?” signal, the system transitions to the navigation
subsystem, informed by the obstacle detection subsystem.
This is to transition from waiting at the crosswalk to cross-
ing the road.
Originally, the ResNet model was trained using Python’s
tensorflow libraries in Google Colab, and the resulting .h5
model weights were loaded onto the Jetson Orin Nano.
However, during integration, we found that the tensorflow
version required was incompatible with the Docker con-
tainer required to run models using the GPU. The solution
was to rebuild the same ResNet model using Python’s torch
library instead, completely avoiding tensorflow.

6.3 Obstacle Detection Subsystem

The obstacle detection subsystem is designed to identify
unexpected objects in the user’s path using a YOLOv12-
based object detection model. To ensure robust decision-
making, the system follows the same majority voting strat-
egy as the walk sign classifier. The model must correctly
classify at least 90% of individual frames, ensuring the
probability of three out of five consecutive frames being
misclassified remains below 1%. This helps prevent critical
false negatives, enhancing overall safety. Refer to Figure 4
for a flow chart detailing the image collection and model
output. Unlike the navigation phase, this subsystem works
in parallel with the crosswalk navigation phase, which is
reflected in the flow chart.

Real-time constraints dictate that obstacle detection
must provide feedback within 1.5 seconds, with an infer-
ence latency of < 1 second per frame, which is lower than
the walk sign classification. However, this more stringent
inference speed requirement allows users sufficient reaction
time to navigate around detected obstacles safely.

One issue that arose when integrating the YOLO model
with the Jetson was that the inference latency was very
high, taking almost 10 seconds to output a single predic-
tion. We discovered that the program was not detecting
the Jetson’s GPU, so a Docker container was required to
run the YOLO model, reducing latency to less than 100 ms
per prediction.

6.4 Crosswalk Navigation Subsystem

The crosswalk navigation subsystem ensures that users
maintain a safe and effective walking trajectory. It em-
ploys data from our ML model to detect deviations from

the intended path, with a tolerance of 4+45°. The sys-
tem maintains an accuracy of at least 90% in detecting
deviations, ensuring reliable path guidance. In addition,
it continuously monitors the surrounding via the image
input from the camera, and appropriately alerts the user
to take any necessary deviations to avoid potential obsta-
cles if the YOLO model identifies nearby obstacles (such
as right in front of the user) with a high degree of confi-
dence. When a user veers by more than 45° without any
obstacles detected, corrective audio feedback is generated
within 1 second to prompt realignment. The system lever-
ages the pyttsx3 text-to-speech engine to provide clear and
immediate auditory cues. Refer to Figure 4 to see how this
subsystem interacts with the obstacle detection subsystem.

Originally, we had planned on using a GPS module to
also pinpoint the position of the traffic sign to aid in cal-
culating the deviation. However, we found that just using
the IMU sensor was sufficient.

6.5 Audio Feedback Management

To ensure seamless user experience, all cues from the
Walk Sign Classification, Obstacle Detection, and Cross-
walk Navigation subsystems are managed through an audio
feedback system. This system prioritizes the most critical
alerts to prevent information overload and confusion. The
audio manager selects between text-to-speech notifications
and pre-recorded audio alerts, ensuring that users receive
clear and immediate guidance. The feedback system’s
response time is optimized to < 1 second from event detec-
tion to cue playback. User studies were conducted to refine
audio cues and ensure that they effectively communicate
necessary guidance without causing cognitive overload.

One issue that arose when adding the audio components
was that despite unit tests succeeding on the board, once
we moved the logic to the program running in the Docker
container, the audio stopped working. This required some
debugging of the Docker container’s permissions until fi-
nally the audio worked with the rest of the system.

7 TEST & VALIDATION

7.1 Walk Sign Classification Subsystem

To evaluate the walk sign classification subsystem, we
used our test set that contains images under various light-
ing and weather conditions, as well as test our models in
a real world setting in a controlled crossing scenario. The
system’s performance was assessed using AUROC for walk
signal classification. The classification model must achieve
an AUROC greater than 0.9 on our test set to be con-
sidered reliable. Additionally, majority vote classification
accuracy were assessed using 5-frame sequences from the
test dataset. The accuracy was calculated based on the
proportion of sequences where the majority prediction is
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correct. A minimum accuracy of 95% is required across
test sequences. Inference efficiency was also measured by
evaluating the processing time per frame and batch. Each
frame should be processed within 100 milliseconds, and the
total audio delay must not exceed 500 milliseconds. Refer
to Figure 8 for the full table of results. Here is also a confu-
sion matrix from testing the image classification on a test
dataset:

Figure 5: The results of testing the ResNet model on im-
ages collected around Pittsburgh. We see that the model
rarely predicts false positives, and that the lower test accu-
racy is mostly due to false negatives, which are much safer
and more tolerable for our use case.

7.2 Obstacle Detection Subsystem

To evaluate the obstacle detection subsystem, we once
again sourced real world images under various lighting and
weather conditions, as well as tested our models in a real
world setting in a controlled crossing scenario. The sys-
tem’s performance was assessed using mean Average Preci-
sion (mAP) for object detection, and we used the bdd100K
dataset to initially proxy our models’ performance on an
out of distribution dataset that the models would not have
been trained on, and therefore would not have seen before.
This dataset contains over 100,000 images collected around
the world in varying lighting conditions. The YOLO de-
tection models were originally expected to achieve an mAP
of >= 0.7 on all classes. However, we found that none of
the models that we tried (YOLOv12 10 and RT-DETR (11,
among others) were not able to meet these initial guidelines.
However, we observed that all of our tested models topped
out at around the same values, and hypothesized that this
was simply the best that object detection models could do
on our out of distribution evaluation set. When evaluating
the object detection models on the real crosswalk images
that we manually corrected, we found that the object de-
tection models performed extremely well, correctly locating
and identifying objects in the camera’s field of view very
consistently, referring to reffig:framel and 13. We therefore
posit that despite not meeting our original evaluation re-
quirement, the object detection models perform sufficiently

well in our real world setting we are deploying in.

To verify the obstacle detection and classification sub-
systems, user validation tests were conducted where par-
ticipants wear the system and attempt to detect obstacles
in their path. The system’s accuracy was evaluated based
on the percentage of users successfully orienting the cam-
era to detect signals within five seconds. This helped us
make improvements to the mounting instructions, and add
auditory guidance to assist in proper positioning. Refer to
Figure 8 for the full table of results.

7.3 Crosswalk Navigation Subsystem

The crosswalk navigation subsystem was assessed using
controlled veering angle detection tests. Participants walk
along a straight path and at predefined angles of 10°, 30°,
45°, and 60° while the system detects deviations. The sys-
tem must correctly identify at least 95% of deviations of
45° or greater. Additionally, the response time for veering
detection was measured by recording the delay from de-
tection to auditory feedback. The response time must not
exceed 300 milliseconds. Refer to Figure 9 for the full table
of results.

7.4 Power Draw

The overall power efficiency of the crosswalk navigation
subsystem was tested by measuring power consumption un-
der peak load conditions. The system must operate for at
least six hours without requiring a recharge. Refer to Fig-
ure 9 for the full table of results.

7.5 Audio Feedback Management

To assess the clarity and effectiveness of audio feedback,
users intentionally veered off-course and provide subjective
ratings on a 1-5 scale. The system must achieve an aver-
age clarity score of at least 4.0. In addition to clarity, the
system’s response time for providing audio feedback was
evaluated. The delay from event detection to auditory re-
sponse must not exceed 300 milliseconds
By conducting these evaluations, the smart chest harness’s
reliability, efficiency, and usability were verified, ensuring it
effectively assists visually impaired users in crosswalk nav-
igation and obstacle detection. Refer to Figure 9 for the
full table of results.

8 PROJECT MANAGEMENT

Schedule

The schedule is shown in Fig. 7. The only changes to
the Gantt chart since the design review report were the
red blocks. This was mostly debugging integration issues
such as Python library dependency conflicts, getting the
audio to work, and setting up the Docker container. There
was also extra time added for optimizing the two computer
vision models and improving their performance.

8.1
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8.2 Team Member Responsibilities

Our work and responsibilities was distributed to team
members as follows.

e William: Primarily responsible for the Hardware.
This includes: Ordering parts, testing parts, setting
up devices; interfacing components, assembly and
physical design.

e Max: Primarily responsible for the Walk Sign Clas-
sifier Subsystem. This includes optimizing/training
the Walk Sign Classifier, writing the control system,
and testing the model.

e Andrew: Primarily responsible for: Navigation Sub-
system; This includes optimizing/training the Ob-
ject Detection model, writing the control system, and
testing the model.

e Shared: The shared tasks include integrating be-
tween the hardware and software interface for com-
ponents, testing for requirements, user testing, and
making final optimizations.

8.3 Bill of Materials and Budget

Refer to Table 1. The only item that we did not use was
the GPS module. We did not order any additional materi-
als, though free materials were used from IDeATe courses
and facilities.

8.4 TechSpark Usage Plans

We did not use TechSpark for our project. Instead, the
extra free materials (such as acrylic), lasercutting, and as-
sembly were done through IDeATe.

8.5 Risk Mitigation Plans

There are a few potential failure points in our project,
outlined below with their respective mitigation plans:

1. Risk: Walk Sign Classifier’s accuracy may be re-
duced in poor visibility conditions.
Mitigation Plan: We retrained with nighttime
data, which did improve its test accuracy. Another
solution that we considered was using a different, pre-
trained model besides the ResNet one we used.

2. Risk: A big concern is that the inference speed of
our models may be too high. This would cause issues
like audio cues being given long after the event has
occurred, potentially placing the user in data.
Mitigation Plan: In this case, we planned to opti-
mize the model through quantization. This is a tech-
nique that allows us to reduce the size and computa-
tional requirements of the model, without sacrificing
too much accuracy. However, we found that using a
Docker container to ensure that the models used the
NVIDIA GPU was another way to reduce the latency.

3. Risk: Camera placement and orientation greatly af-

fects the output quality of our ML models. If a user
improperly wears the system, the video data may be
poor/unusable.

Mitigation Plan: We planned to make the system
as fool-proof as possible to wear, so that the rela-
tive position of the camera on a user’s body would be
constant. We mitigated this risk by using adjustable
components anytime there was a contact point be-
tween the user and the project (e.g. chest harness
with adjustable strap). The mounting mechanism
was also designed to be snug and secure to prevent
excessive wobbling. User testing with people of dif-
ferent builds showed that our design succeeded in this
case.

. Risk: The project could potentially fail to detect the

user veering off the course of the sidewalk. The IMU
sensor output could potentially drift, causing incor-
rect values to be read.

Mitigation Plan: There are a few ways we could
have mitigated this. First, we could continuously re-
estimate the target position as the user crosses the
road, instead of just at the beginning. This would
correct for drift error, and also ensures that we do not
rely on a single estimated target endpoint. We could
have also tried to integrate the GPS module, and use
that data to track the user’s location on the sidewalk.
However the GPS solution came with its own set of
risks, relating to the accuracy of the module and re-
liance on the OpenStreetMap or Google API. In the
end, the IMU sensor was sufficient by itself and the
drift did not prove to be consequential.

. Risk: For the audio output, there could potentially

be delayed feedback depending on the latency of the
Audio Manager process and protocol used (i.e. Blue-
tooth).

Mitigation Plan: Latency issues stemming from
the Audio Manager process were likely resolvable
through code optimizations, as we do not envision
that being a particularly resource intensive process.
However, if the audio latency issues came from the
Bluetooth protocol (which is used by the bone-
conducting headphones), we planned to swap to using
the on-ear headphones that use the 3.5mm audio jack.
This would remove the latency caused by a wireless
protocol, as wired audio have near zero latency (for
such a short wire length).

. Risk: A concern is that the power consumption of

the system might be too high. We calculated for the
reported 15W upper limit of the Jetson Orin Nano,
but we may need to use a ”Super Mode” which con-
sumes even more power in order to reduce the infer-
ence latency of our models.

Mitigation Plan: The simplest solution was to just
buy a larger power bank (24,000mAh). However this
goes to our considerations for user comfort, as a power
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Table 1: Bill of materials

Description Model # Manufacturer Quantity Cost @ Total
Processing Unit Jetson Orin Nano Nvidia 1 $249 ($0 In Stock) $0
Camera IMX219 Arducam 1 $23.99  $23.99
GPS PA1616S Adafruit 1 $29.95 $29.95
9-DOF IMU BNOO055 Adafruit 1 $50.18 $50.18
USB-C PD to DC Cable 5451 Adafruit 1 $7.95 $7.95
Headphones OpenMove AfterShokz 1 $129.99 $129.99
M2.5 Nylon Standoffs pta241226tt001308 PATIKIL 1 $13.49 $13.49
M2 Nylon Standoffs BOBXT4FG1T COMRUN 1 $12.99 $12.99

$385.13

bank of that size is quite heavy. As such, we preferred
to mitigate this risk through other means like opti-
mizing for power management and adding low-power
states. In the end, the 24,000 mAh battery we used
provided enough battery to meet our requirements.

9 Ethical Issues

The Self-Driving Human project has several important
ethical considerations related to the safety, autonomy, and
well-being of its users; visually impaired pedestrians. While
the goal of the system is to increase independence and
safety in urban navigation, we also need to evaluate the
ethical implications of its potential deployment.

The first ethical priority is user safety. A failure in the
system’s ability to correctly identify crosswalks, interpret
traffic signals, or detect hazards such as oncoming vehi-
cles, construction, or uneven terrain could lead to serious
harm. This is especially critical because users may place a
high degree of trust in the system. To mitigate these risks,
extensive validation through simulation and controlled real-
world testing is essential before public deployment, which
we have begun to implement in our preparation for our
demo. Backup safety mechanisms such as haptic feedback
or emergency alerts could also be included to reduce the
risk of harm in the event of a malfunction. Additionally,
the system should be designed to complement, not replace,
existing mobility aids like white canes or guide dogs to
avoid promoting over-reliance on the technology.

Next, there is a risk of exposing sensitive user information
such as location, movement patterns, or video recordings.
Ensuring strong encryption, anonymization, and local pro-
cessing where possible is critical to upholding user privacy.
Ethical development should prioritize user consent, trans-
parency in data usage, and compliance with global data
protection regulations (one example is GDPR).

The Self-Driving Human also has the potential to enhance
public welfare by expanding opportunities for visually im-
paired individuals to live independently, access education,
employment, and participate more fully in society. How-
ever, economic barriers could limit access to the technology,

especially for low-income users or in under-resourced re-
gions. Ethical design should include strategies to ensure af-
fordability, such as public funding, nonprofit partnerships,
or insurance coverage. Failure to address these disparities
could reinforce existing inequalities.

Additionally, navigation environments vary significantly
around the world in terms of infrastructure, signage, cul-
tural behaviors in traffic, and urban planning. A system
trained solely on data from one country (such as the U.S.)
may perform poorly in international settings, potentially
endangering users abroad. Therefore, global dataset diver-
sity must be prioritized during model training. Moreover,
collaboration with local communities and disability organi-
zations worldwide is essential to tailor the device to diverse
user needs and environments.

Finally, the environmental impact of hardware production
and energy consumption must be considered. The sys-
tem should use sustainable materials where possible and
be designed for energy efficiency and long-term durability.
Ethical engineering also includes planning for responsi-
ble e-waste disposal and repairability. Other measures we
have preemptively took to address this is to use compressed
model inference tehcnique such as quantization to reduce
the computational costs of continuously running model in-
ference.

The success of the Self-Driving Human depends not only on
technical performance but also on how well it addresses the
ethical challenges associated with safety, equity, privacy,
and sustainability. Incorporating these ethical principles
into the design and implementation process is essential to
creating a product that serves the public good and earns
the trust of its users and society at large.

10 RELATED WORK

Yu et al [7] implemented a lightweight solution to the
navigation problem, using CNNs to provide direction and
information on the pedestrian crossing light, which is avail-
able through an iOS app. However, this approach does
not take into account any sort of object detection, which
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poses a significant risk to the user in our project defini-
tion. Cai et al. [1] offers an impressive analysis of several
ML paradigms to determine the best models for ensuring
pedestrian safety, but do not incorporate any hardware in-
tegration in their solution, which makes it inapplicable for
our project scope. We noticed that Hua et al. [3] proposed
a multimodal ML model, using information from both reg-
ular and infrared images to guide a more accurate analysis
of pedestrian crossing obstacles. However, this work does
not incorporate any navigation for the user, making this in-
complete with regards to our application. Finally, Hwang
et al. [4] developed a custom multimodal Vision-Language
Transformer Model to provide both a safety score and a
description of the street in natural language, providing a
nuanced understanding of the surroundings for the user.
This is an exciting new approach to the problem at hand,
but they do not explicitly use it for any use case beyond
determining when it is safe to cross the road. Arguably,
our current control modules integrating both the walk sign
classifier and the navigation achieve a similar goal, and so
this work does not provide much benefit beyond using a
different approach to solve the same problem.

11 SUMMARY

The Self-Driving Human is a navigation aid designed to
help visually impaired pedestrians safely cross the street. It
does so using computer vision, IMU-based heading track-
ing, and real-time audio feedback. The device provides
users with walk sign assistance, obstacle avoidance, and
cross walk alignment aid. We envision our project provid-
ing visually impaired users with a greater level of indepen-
dence by removing their reliance on external accessibility
infrastructure, offering navigation support in its place.

Overall, we were able to meet most of our design re-

quirements and integrate all submodules into one complete
system. The only metric we did not meet was the mAP
of the off-the-shelf YOLOv12 model, but we qualitatively
showed that its performance in detecting objects relevant
to our use case was high enough.
Regarding future work, we would like to improve upon one
of the fundamental limitations of our project, which was
the latency of our audio feedback, which was a result of
model inference and text-to-speech delay. Although we
met our required latency thresholds, faster feedback could
result in an even smoother experience for the users. One
solution could be to avoid using text-to-speech libraries
and instead simply play pre-recorded audio files, avoiding
the processing delay of generating audio from text.

One lesson we learned was to begin the complete inte-
gration process earlier, as submodules that work indepen-
dently may not always work together. This is true for both
hardware and software components, and in our case, the
integration of the ResNet model, YOLO model, and au-
dio functions were the main problems. Python dependency

conflicts can be incredibly annoying to resolve, and a good
rule of thumb when sourcing code is to use the most up-
to-date versions you can find. Another lesson is to set up
a Github repository at the very beginning of the project,
as organization becomes harder to manage if you start it
later.

Glossary of Acronyms

o AT — Artificial Intelligence

e AUROC — Area Under the Receiver Operating Char-
acteristic Curve

e CNN - Convolutional Neural Network
e DC — Direct Current

e FPS — Frames Per Second

e FOV — Field of View

e GPS — Global Positioning System
o IMU — Inertial Measurement Unit
e mAP — Mean Average Precision

e ML — Machine Learning

e PD — Power Delivery

e ReLU — Rectified Linear Unit

e ResNet — Residual Neural Network
e SDK — Software Development Kit

e TTS — Text-to-Speech (used for converting naviga-
tion instructions into voice feedback)

e USB — Universal Serial Bus
e YOLO — You Only Look Once
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Figure 7: Gantt Chart
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-mAF: 0.3-06

B-frame majority vote accuracy:
98.2%

Wallk Sign Latency: 33 ms
Object Detection Latency: 90 ms
Audio Latency: 100 ms

Successful orientation in 95% of
cases

Figure 8: The results of testing our computer vision models, feedback latency, and user verification testing.
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Figure 9: The results of testing the angle detection, audio performance, and the power draw.



18-500 Design Review Report — William Shaw, Max Tang, Andrew Wang — 28 February 2025 Page 17 of 19

Figure 10: Precision-recall curve of the YOLOvV12 object detection model, plotted for all classes with the mAP displayed
in the legend.
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Figure 11: Precision-recall curve of the YOLOvV12 object detection model, plotted for all classes with the mAP displayed
in the legend.
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Figure 12: Bounding boxes on an input image that was used during testing. We observe that not only are the locations
correct, but the classifications of of the objects are completely correct.

Figure 13: Another example of our object detection model output on our real world dataset that we curated. Once
again, we observe that not only are the locations correct, but the classifications of of the objects are completely correct.



