### Use Case + Use Case Requirements

CHALLENGE: Visually impaired pedestrians rely on external aids to cross the road.

- Not all crossroads have reliable or maintained aids
- Obstacles (like debris) on the road can further reduce safety

SOLUTION: A head-worn device that aids the user in crossing the road by providing real time visual-to-audio guidance.

- "WALK" vs. "DON'T WALK" signals
- Helps user stay within the crosswalk
- Alerts to unexpected objects in the walking path







## **Quantitative Design Requirements - Hardware**

| Use Case Requirement                                                         | Design Requirement                                              | Why                                                                                              |
|------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Detect walk signs and obstacles in real-time to guide user                   | IMX219 wide-angle camera:<br>1920x1080@30fps, 105° FOV          | 105° FOV is wide enough to see objects around user 1920x1080 is high enough resolution for model |
| Keep user within ±20° of the correct crosswalk alignment                     | BNO055 IMU with heading accuracy of $\pm 2^{\circ}$             | Extremely precise IMU, and accounts for things like head tilt.                                   |
| Provide real-time audio feedback within<br>0.5s of creating navigation event | USB sound card + on-ear headphones<br>(<0.01s hardware latency) | On-ear headphones give better environmental awareness                                            |
| Device must last $\geq$ 2 hrs on battery                                     | 10,000 mAh power bank with DC barrel jack adaptor               | Jetson Orin Nano draws 7-15W depending on power<br>mode.<br>(15W * 2hrs * 1000)/5V = 6,000mAh    |

# **Quantitative Design Requirements - Software**

| Use Case Requirement                                                                                 | Design Requirement                                                                                                                                                                  | Why                                                                                                                                            |
|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| The system must correctly classify the walk signal with AUROC $\geq$ 0.9 to ensure high reliability. | Walk Sign Classification model must achieve AUROC > 0.9 on the test set.                                                                                                            | Ensures the model is robust enough for real-world<br>usage, balancing accuracy with computational<br>feasibility while maximizing user safety. |
| The probability of misclassifying the walk<br>signal over 5 consecutive frames should<br>be < 1%.    | Majority voting: The model must correctly classify<br>at least 90% of individual frames to ensure that<br>the probability of 3/5 consecutive frames being<br>misclassified is < 1%. | Reduces the impact of individual frame<br>misclassifications, improving system robustness and<br>user trust in the guidance system.            |
| The system must provide a decision<br>within 3 seconds to allow users to react<br>to a "GO" signal.  | Model inference latency must be ≤ 3 sec per frame.                                                                                                                                  | Ensures that users receive timely guidance,<br>preventing delays that could impact safe crossing<br>decisions.                                 |

# **Quantitative Design Requirements - Software**

| Use Case Requirement                                                                                            | Design Requirement                                                                                                                                                                  | Why                                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The system must detect obstacles with at least 90% accuracy to ensure user safety.                              | Computer Vision Model (YOLOv8) must achieve ≥ 70% mAP (mean Average Precision)                                                                                                      | Ensures that the model detects obstacles with high<br>reliability while balancing computational constraints.<br>Higher mAP improves real-world detection accuracy<br>and user safety. |
| The system must correctly classify the<br>walk signal in at least 90% of frames to<br>provide reliable guidance | Majority voting: The system must correctly<br>classify at least 90% of individual frames,<br>ensuring that the probability of 3/5 consecutive<br>frames being misclassified is <1%. | Majority voting increases system robustness,<br>reducing the chance of a critical false negative. This<br>ensures reliable obstacle detection even under<br>varying conditions.       |
| The system must provide feedback within<br>1.5 seconds to allow users enough time<br>to react.                  | Model inference latency must be ≤ 1 sec per frame.                                                                                                                                  | A low latency ensures that the user receives timely<br>warnings and has sufficient reaction time to avoid<br>obstacles.                                                               |

# **Quantitative Design Requirements - Software**

| Use Case Requirement                                                                                                                                        | Design Requirement                                                                                                                                                                                                                  | Why                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Crosswalk navigation allows for no more than 20 degrees of deviation                                                                                        | ML model and/or GPS must detect deviations ≥ 20° with at least 90% accuracy.                                                                                                                                                        | Ensures users maintain a safe and effective walking path while allowing for natural movement.                                                                                                                              |
| The system must provide corrective<br>audio feedback within 1 second of<br>detecting veering, clarity of feedback<br>should be satisfactory as per the user | Audio feedback system (e.g., using pyttsx3) must<br>generate a response within ≤ 1 sec of deviation<br>detection. Audio feedback must be tested for<br>clarity and comprehension, with at least 90%<br>user satisfaction in trials. | Timely feedback is essential to help users correct<br>their trajectory before veering too far off course.,<br>while unclear or confusing feedback can be as<br>harmful as delayed feedback for visually impaired<br>users. |

# Solution Approach

- How We Are Solving the Problem:
  - Real-time ML on Jetson Orin Nano
  - Camera based identification
  - GPS based compass for alignment
  - Audio Feedback
- Evolution Since Proposal:
  - Compass + GPS
  - USB Sound Card
- Considerations:
  - Avoids reliance on inconsistent infrastructure
  - Promotes self sufficiency

# System Specification



## Implementation Plan - Part 1

Designing \ Developing:

- Walk Sign Classifier + Control System
- Navigation Control System
- Camera Driver
- Location Data Handler
- Audio Manager
- Labelled datasets

#### Buying:

- Jetson Orin Nano
- Arducam IMX219
- BNO055 IMU
- Power Bank
- Headphones
- Helmet

### Assembling:

- Mounting
- Cases

## Implementation Plan - Part 2

#### Copying:

- Neural Network Architecture for Walk Sign Image Classifier
- Object Detector (YOLOv8 Model)
- Portions of datasets

#### Downloading:

- Hardware drivers
- Libraries

# Testing, Verification and Metrics - Part 1

| Test Name                                | Test Inputs                                                                                     | Test Outputs                                                                   | Passing Criteria                                            | Risk/Mitigation                                                                                   |
|------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Per-frame Classification<br>Performance  | Real-world video frames<br>from crosswalks under<br>various lighting and<br>weather conditions. | AUROC (Walk SIgn<br>Classification)<br>mAP (Object Detection)                  | AUROC > 0.9<br>mAP > 0.7                                    | Low accuracy in poor<br>visibility<br>Retrain model with<br>nighttime and foggy<br>data.          |
| Majority Vote<br>Classification Accuracy | 10-frame sequences from test dataset.                                                           | Accuracy: Correct<br>majority vote<br>predictions/Total number<br>of sequences | ≥ 95% accuracy across test sequences.                       | Model inconsistencies<br>across frames<br>Implement smoothing<br>techniques.                      |
| Inference & Audio<br>Response Time       | Measure processing<br>time for 10-frame<br>inference batches and<br>audio playback delay.       | Inference time per frame<br>and batch; audio delay.                            | Inference latency ≤<br>100ms/frame; audio<br>delay ≤ 500ms. | High latency issues<br>Optimize model through<br>quantization                                     |
| User Verification                        | Users wear system and attempt to detect walk signals and obstacles.                             | % of users successfully orienting camera to detect signals.                    | ≥ 95% success rate within 5s.                               | Users struggle with<br>alignment<br>Improve mounting<br>instructions or add<br>auditory guidance. |

# Testing, Verification and Metrics - Part 2

| Test Name               | Test Inputs                                                                                            | Test Outputs                                                  | Passing Criteria                       | Risk/Mitigation                                                                                                       |
|-------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Veering Angle Detection | Controlled user tests<br>walking along a straight<br>path and at predefined<br>angles (10°, 20°, 30°). | Correctly detecting 20°+<br>deviations/All 20°+<br>deviations | ≥ 95% accuracy for 20°+<br>deviations. | <b>Failure to detect</b> <i>Adjust</i><br><i>detection thresholds or</i><br><i>refine sensor</i><br><i>placement.</i> |
| Audio Response Time     | Users simulate veering<br>(>20°); measure delay<br>from detection to audio.                            | Mean delay (ms).                                              | ≤ 300ms response time.                 | <b>Delayed feedback</b><br>Optimize<br>sensor-to-audio<br>processing pipeline.                                        |
| Audio Feedback Clarity  | Users intentionally veer off-course and provide subjective ratings.                                    | Clarity score (1–5 scale).                                    | Mean clarity rating $\ge$ 4.0          | <b>Poor clarity</b><br>Improve phrasing,<br>volume, or sound cues.                                                    |
| Power Draw Test         | Measure device power<br>consumption under<br>maximum load.                                             | Battery life (hours) at peak wattage.                         | ≥ 6 hours of operation.                | High power<br>consumption<br>Optimize power<br>management and<br>low-power states.                                    |

# Project Management

|                                    |          |                                                     |     |   |     |     |   | Fe    | buary |       |                                                                                |     |   |    |    |   | March |    |     |   |   |   |        |       |      |      |                                                                              |    |     | April |   |   |    |     |   |   |      |       |        |        |       |    |   |   |    |   |   |   |    |     |   |   |   |
|------------------------------------|----------|-----------------------------------------------------|-----|---|-----|-----|---|-------|-------|-------|--------------------------------------------------------------------------------|-----|---|----|----|---|-------|----|-----|---|---|---|--------|-------|------|------|------------------------------------------------------------------------------|----|-----|-------|---|---|----|-----|---|---|------|-------|--------|--------|-------|----|---|---|----|---|---|---|----|-----|---|---|---|
|                                    | TASK     | WEEK 1 - 02/03/2025 WEEK 2 - 02/10/2025 WEEK 3 - 02 |     |   |     |     |   | /2025 | WEE   | 02/24 | 24/2025 WEEK 5 - 03/03/2025 WEEK 6 - 03/10/2025 WEEK 7 - 03/17/2025 WEEK 8 - 0 |     |   |    |    |   |       |    |     |   |   |   | - o3/: | 24/20 | 25 V | VEEK | 9 - 03/31/2025 WEEK 10 - 04/07/2025 WEEK 11 - 04/14/2025 WEEK 12 - 04/21/202 |    |     |       |   |   |    |     |   |   | 25 W | EEK 3 | 3 - 04 | /28/20 | 025 \ |    |   |   |    |   |   |   |    |     |   |   |   |
| TASK TITLE                         | OWNER    | м                                                   | T W | R | FI  | и т | w | RF    | м     | т     | WF                                                                             | ۲ F | м | т١ | NR | F | м     | τν | V R | F | м | т | WR     | F     | м    | т    | w                                                                            | RF | F M | т     | w | R | FI | и т | w | R | FN   | ιт    | w      | R      | FN    | иT | w | R | FM | т | w | R | FN | 1 Т | w | R | F |
| Hardware Tasks                     | William  |                                                     |     |   |     |     |   |       |       |       |                                                                                |     |   |    |    |   |       |    |     |   |   |   |        |       |      |      |                                                                              |    |     |       |   |   |    |     |   |   |      |       |        |        |       |    |   |   |    |   |   |   |    |     |   |   |   |
| Ordering parts                     |          |                                                     |     |   |     |     |   |       |       |       |                                                                                |     |   |    |    |   |       |    |     |   | _ |   |        |       |      |      |                                                                              |    |     |       |   |   |    |     |   |   |      |       |        |        |       |    |   |   |    |   |   |   | _  |     |   |   |   |
| Testing parts                      |          |                                                     |     |   |     |     |   |       |       |       |                                                                                |     |   |    |    |   |       |    |     |   |   |   |        |       |      |      |                                                                              |    |     |       |   |   |    |     |   |   |      |       |        |        |       |    |   |   |    |   |   |   |    |     |   |   |   |
| Assembly                           |          |                                                     |     |   |     |     |   |       |       |       |                                                                                |     |   |    |    |   |       |    |     |   |   |   |        |       |      |      |                                                                              |    |     |       |   |   |    |     |   |   |      |       |        |        |       |    |   |   |    |   |   |   |    |     |   |   |   |
| Physical Device                    |          |                                                     |     |   |     |     |   |       |       |       |                                                                                |     |   |    |    |   |       |    |     |   |   |   |        |       |      |      |                                                                              |    |     | 1.    |   |   |    |     |   |   |      |       |        |        |       |    |   |   |    |   |   |   |    |     |   |   |   |
| Slack                              |          |                                                     |     |   |     |     |   |       |       |       |                                                                                |     |   |    |    |   |       |    |     |   |   |   |        |       |      |      |                                                                              |    |     |       |   |   |    |     |   |   |      |       |        |        |       |    |   |   |    |   |   |   |    |     |   |   |   |
| Walk Sign Classifier               | Max      |                                                     |     |   |     |     |   |       |       |       |                                                                                |     |   |    |    |   |       |    |     |   |   |   |        |       |      |      |                                                                              |    |     |       |   |   |    |     |   |   |      |       |        |        |       |    |   |   |    |   |   |   |    |     |   |   |   |
| Optimize / Train model             |          |                                                     |     |   |     |     |   |       |       |       |                                                                                |     |   |    |    |   |       |    |     |   |   |   |        |       |      |      |                                                                              |    |     |       |   |   |    |     |   |   |      |       |        |        |       |    |   |   |    |   |   |   |    |     |   |   |   |
| Code to handle outputs             |          |                                                     |     |   |     |     |   |       |       |       |                                                                                |     |   |    |    |   |       |    |     |   |   |   |        |       |      |      |                                                                              |    |     |       |   |   |    |     |   |   |      |       |        |        |       |    |   |   |    |   |   |   |    |     |   |   |   |
| Test model (speed, size, accuracy) |          |                                                     |     |   |     |     |   |       |       |       |                                                                                |     |   |    |    |   |       |    |     |   |   |   |        |       |      |      |                                                                              |    |     |       |   |   |    |     |   |   |      |       |        |        |       |    |   |   |    |   |   |   |    |     |   |   |   |
| Working Walk Sign Classifier       |          |                                                     |     |   |     |     |   |       |       |       |                                                                                |     |   |    |    |   |       |    |     |   |   |   |        |       |      |      |                                                                              |    |     |       |   |   |    |     |   |   |      |       |        |        |       |    |   |   |    |   |   |   |    |     |   |   |   |
| Slack                              |          |                                                     |     |   |     |     |   |       |       |       |                                                                                |     |   |    |    |   |       |    |     |   |   |   |        |       |      |      |                                                                              |    |     |       |   |   |    |     |   |   |      |       |        |        |       |    |   |   |    |   |   |   |    |     |   |   |   |
| Object Detection                   | Andrew   |                                                     |     |   |     |     |   | 1     |       |       |                                                                                |     |   |    |    |   |       |    |     |   |   |   |        |       |      |      |                                                                              |    |     |       |   |   |    |     |   |   |      |       |        |        |       |    |   |   |    |   |   |   |    |     |   |   |   |
| Optimize / Train model             |          |                                                     |     |   |     |     |   |       |       |       |                                                                                |     |   |    |    |   |       |    |     |   |   |   |        |       |      |      |                                                                              |    |     |       |   |   |    |     |   |   |      |       |        |        |       |    |   |   |    |   |   |   |    |     |   |   |   |
| Code to handle outputs             |          |                                                     |     |   |     |     |   |       |       |       |                                                                                |     |   |    |    |   |       |    |     |   |   |   |        |       |      |      |                                                                              |    |     |       |   |   |    |     |   |   |      |       |        |        |       |    |   |   |    |   |   |   |    |     |   |   |   |
| Test model (speed, size, accuracy) |          |                                                     |     |   |     |     |   |       |       |       |                                                                                |     |   |    |    |   |       |    |     |   |   |   |        |       |      |      |                                                                              |    |     |       |   |   |    |     |   |   |      |       |        |        |       |    |   |   |    |   |   |   |    |     |   |   |   |
| Working Walk Sign Classifier       |          |                                                     |     |   |     |     |   |       |       |       |                                                                                |     |   |    |    |   |       |    |     |   |   |   |        |       |      |      |                                                                              |    |     |       |   |   |    |     |   |   |      |       |        |        |       |    |   |   |    |   |   |   |    |     |   |   |   |
| Slack                              |          |                                                     |     |   |     |     |   |       |       |       |                                                                                |     |   |    |    |   |       |    |     |   |   |   |        |       |      |      |                                                                              |    |     |       |   |   |    |     |   |   |      |       |        |        |       |    |   |   |    |   |   |   |    |     |   |   |   |
| Hardware / Software Interface      | Everyone |                                                     |     |   |     |     |   |       |       |       |                                                                                |     |   |    |    |   |       |    |     |   |   |   |        |       |      |      |                                                                              |    |     |       |   |   |    |     |   |   |      |       |        |        |       |    |   |   |    |   |   |   |    |     |   |   |   |
| Camera Integration                 |          |                                                     |     |   | 1   |     |   |       |       |       |                                                                                |     |   |    |    |   |       |    |     |   |   |   |        |       |      |      |                                                                              |    |     |       |   |   |    |     |   |   |      |       |        |        |       |    |   |   |    |   |   |   |    |     |   |   |   |
| IMU Integration                    |          |                                                     |     |   |     |     |   |       |       |       |                                                                                |     |   |    |    |   |       |    |     |   |   |   |        |       |      |      |                                                                              |    |     |       |   |   |    |     |   |   |      |       |        |        |       |    |   |   |    |   |   |   |    |     |   |   |   |
| Audio Integration                  |          |                                                     |     |   | - 3 |     |   |       |       |       |                                                                                |     |   |    |    |   |       |    |     |   |   |   |        |       |      |      |                                                                              |    |     |       |   |   |    |     |   |   |      |       |        |        |       |    |   |   |    |   |   |   |    |     |   |   |   |
| GPS Integration                    |          |                                                     |     |   |     |     |   |       |       |       |                                                                                |     |   |    |    |   |       |    |     |   |   |   |        |       |      |      |                                                                              |    |     |       |   |   |    |     |   |   |      |       |        |        |       |    |   |   |    |   |   |   |    |     |   |   |   |
| Misc Code                          | Everyone | j,                                                  | 2   |   | 1   |     |   | 1     |       |       |                                                                                |     |   |    |    |   |       |    |     |   |   |   |        |       |      |      |                                                                              |    |     |       |   |   |    |     |   |   |      |       |        |        | 1     |    |   |   |    |   |   |   |    |     |   |   |   |
| Pass control between modules       |          |                                                     |     |   |     |     |   |       |       |       |                                                                                |     |   |    |    |   |       |    |     |   |   |   |        |       |      |      |                                                                              |    |     |       |   |   |    |     |   |   |      |       |        |        |       |    |   |   |    |   |   |   |    |     |   |   |   |
| Slack                              |          |                                                     |     |   |     |     |   |       |       |       |                                                                                |     |   |    |    |   |       |    |     |   |   |   |        |       |      |      |                                                                              |    |     |       |   |   |    |     |   |   |      |       |        |        |       |    |   |   |    |   |   |   |    |     |   |   |   |
| Testing / Optimization             | Everyone |                                                     |     |   | 1   |     |   | 1     |       |       |                                                                                |     |   |    |    |   |       |    |     |   |   |   |        |       |      |      |                                                                              |    |     |       |   |   |    |     |   |   |      |       |        |        |       |    |   |   |    |   |   |   |    |     |   |   |   |
| Testing for requirements           |          |                                                     |     |   |     |     |   |       |       |       |                                                                                |     |   |    |    |   |       |    |     |   |   |   |        |       |      |      |                                                                              |    |     |       |   |   |    |     |   |   |      |       |        |        |       |    |   |   |    |   |   |   |    |     |   |   |   |
| User testing                       |          |                                                     |     |   |     |     |   |       |       |       |                                                                                |     |   |    |    |   |       |    |     |   |   |   |        |       |      |      |                                                                              |    |     |       |   |   |    |     |   |   |      |       |        |        |       |    |   |   |    |   |   |   |    |     |   |   |   |
| Optimizations                      |          |                                                     |     |   |     |     |   |       |       |       |                                                                                |     |   |    |    |   |       |    |     |   |   |   |        |       |      |      |                                                                              |    |     |       |   |   |    |     |   |   |      |       |        |        |       |    |   |   |    |   |   |   |    |     |   |   |   |
| Slack                              |          |                                                     |     |   |     |     |   |       |       |       |                                                                                |     |   |    |    |   |       |    |     |   |   |   |        |       |      |      |                                                                              |    |     |       |   |   |    |     |   |   |      |       |        |        |       |    |   |   |    |   |   |   |    |     |   |   |   |
|                                    |          |                                                     | 1   |   |     |     |   |       |       |       |                                                                                |     |   |    |    |   |       |    |     |   |   |   |        |       |      |      |                                                                              |    |     |       |   |   |    |     |   |   |      |       |        |        |       |    |   |   |    |   |   |   |    |     |   |   |   |

