
The Self-Driving Human
Team D3: Proposal Presentation
William Shaw, Max Tang, Andrew Wang

Use Case

CHALLENGE: Visually impaired pedestrians rely
on external aids to cross the road.

● Not all crossroads have reliable or
maintained aids

● Obstacles (like debris) on the road can
further reduce safety

SOLUTION: A head-worn device that aids the
user in crossing the road by providing real time
visual-to-audio guidance.
● “WALK” vs. “DON’T WALK” signals
● Helps user stay within the crosswalk
● Alerts to unexpected objects in the

walking path

Alternative existing solutions:
● Accessible pedestrian signals - not widely implemented
● Guide robots/dogs - too expensive

ECE Areas:
● Software: Two ML models used to detect walk signs, avoid obstacles, and stay on the crosswalk
● Hardware: High-resolution camera to capture data, Jetson Nano for inference, GPS for positioning, and

headphones for interfacing

Use-Case Requirements (1)

System 1: Walk Sign Image Classification Model

Metric Requirement Justification

AUROC 0.9 (the model correctly ranks random
“GO” higher than random “STOP” 90% of
the time)

A realistically achievable metric for
distinguishing between “STOP” and “GO” that
is sufficiently high

Majority Vote
Accuracy

99% accuracy when taking majority vote
over 10 frames

Each frame 90% correct → probability that 6/10
frames are wrong is <1%
Must be as high as possible to ensure safety

Inference
Latency

3 seconds after walk sign changes from
“STOP” to “GO”

0.3s to process each frame
Users can still safely cross after waiting 3s

Audio Latency 0.1 seconds Users should hear audio cue to cross as soon
as model output is finalized

Use-Case Requirements (2)

System 2: Crosswalk Obstacle Detection Model

System 3: Crosswalk Navigation

Metric Requirement Justification

Multi-Class AUROC 0.75 across all objects detected A realistically achievable metric for YOLO models that is
sufficiently high

Majority Vote
Accuracy

99% accuracy when taking majority vote over 5 frames Each frame 90% correct → probability that 3/5 frames are wrong
is <1%
Must be as high as possible to ensure safety

Inference Latency 1 seconds after an obstacle enters camera’s range for
model to work

0.2s to process each frame
Gives users enough time to reach

Audio Latency 0.1 seconds Users should hear cue to cross as soon as model finishes

Allowed Deviation Detect when user veers more than 20 degrees off-course
from other side of road

20 degrees is a wide enough angle to allow the user some
freedom when walking

Speed and Clarity of
Audio Feedback

Audio feedback clearly guides user to correct their
direction within 1 second

1 second is fast enough for a user to correct their direction
without having strayed too far off

Technical Challenges

Systems 1 & 2: Walk Sign Image Classification Model + Crosswalk Obstacle Detection
Model

● Test and tune models on real world data to meet classification accuracy metrics
● Make models lightweight enough to fit on Jetson Nano microcontroller by quantizing

parameters
● Make models fast enough to meet inference speed requirements

System 3: Crosswalk Navigation

● Make position tracking accurate and processing fast enough to alert user of any
deviations from crosswalk

● Distinguish if an object on the sidewalk is an obstacle or not

Solution Approach - Hardware

● NVIDIA Jetson Nano
○ Run on-board ML for reduced latency and independence from network conditions
○ Portable enough to be mounted to a person
○ Higher power consumption vs other microcontrollers, but needed for running ML models on

real-time video data.
● Camera Module - Arducam IMX219

○ Wide FOV (175°) lets us see as much info as possible (walk sign, cars, crosswalk)
● GPS Receiver / Compass

○ Lets us track user position and orientation while crossing road
● Audio output - Koss Porta Pro

○ On-ear speakers connected via the 3.5mm jack on the board
○ Needs to not block ambient noise from the road (safety)

● Battery - 10,000mAh battery
○ Expect around 5-10W of power draw from all components
○ Gives us around 4 hrs of battery

Solution Approach - Software

● “Walk Sign Classifier” ML Model
○ Smaller CNN to detect “WALK”, “DON’T WALK”, and ‘Not a crosswalk’
○ Will use existing datasets as well as collected images to train

● “Crosswalk Obstacle Detection” ML Model
○ Fine-tunable “off-the-shelf “ YOLOv8 model to detect cars and obstacles

● Run our code in two phases, one for each model
○ Having two separate phases reduces model and code complexity
○ Easier to debug and manage

● Python backend to read from our modules (GPS, camera, etc)
● Audio feedback done through Python using Text-To-Speech library (pyttsx3)

System 1 and 2: Walk Sign Image Classification Model + Crosswalk Obstacle Detection Model

● Per-frame classification accuracy test
1. Collect real-world dataset from different crosswalks in different visibility conditions
2. Measure performance metrics such as AUROC

● Majority vote accuracy test
1. Run model inference on 10 consecutive frames in test set and compare majority vote

output with actual label
2. Measure accuracy as (no. correct predictions / no. total predictions)

● Response time test for inference and audio feedback
1. Measure total inference time for 10 frames and audio playback delay

● User verification test
1. Test if a user wearing the helmet can orient the camera to detect the walk signal and

obstacles in crosswalk

Testing, Verification and Metrics (1)

Testing, Verification and Metrics (2)

System 3: Crosswalk Navigation

● Veering angle detection test - accuracy of detecting a 20 degree deviation
1. Have testers walk along a straight line and at controlled angles
2. Measure accuracy as how often the system is able to detect 20+ degree angle

deviations (no. of detections / no. of runs)
● Audio response time test - time from deviation detection to audio feedback

1. Simulate veering >20 degrees and measure the time until audio feedback is
played

● Audio feedback clarity
1. Have testers walk off course and test audio feedback
2. Survey testers if feedback was able to help them walk in straight line

Tasks and Division of Labor

William Max Andrew

Hardware / Physical Build
● Ordering parts
● Unit testing each part
● Assembling final build

Handle user orientation
● Organizing live testing

Code:
● Hardware/Software

Integration

Train “Walk Sign Classifier” ML
model
● Finding/collecting datasets
● Optimizing and training
● Testing model requirements

Write code for handling walk sign
detection
● Quantizing the model
● Integrating the model into

the final build

Train “Object Detector” ML model
● Finding/collecting datasets
● Optimizing and training
● Testing model requirements

Write code for handling walk sign
detection
● Quantizing the model
● Integrating the model into

the final build

Schedule

