Team Status Report for 3/8/25

This past week, we mostly focused on finishing up our design review by ensuring that the language was specific enough and concise. Additionally, we focused on adding in clear graphics, like pseudo graphics and diagrams to help convey the information. In addition to this, we have also met with Professor Almaraza and confirmed the use case requirements and gained their opinion on the current workflow. From this, we also got three flutists to sign up for testing for our project and will now be working on getting them additionally sign up for the conjoined mini course. In terms of the project, we have a more clear understanding of how to implement audio segmentation after some research and discussing the concept with professor Sullivan and look towards really finishing this portion up this next week. 

Overall, we are currently on track, though may run into the some issues with the audio segmentation as this will be the most difficult aspect of our project.

Part A (Grace): Our product solution will meet the global factors for those who are not as technologically savvy by making the project as easy to understand as possible. Already this project is significantly decreasing the strain of composing your own music by eliminating the need for individuals to know exact lengths of notes, pitches, etc of when they are composing music and simplifying the process by decreasing the amount of time it takes to transcribe. In addition to this, the individual will only have to upload an mp4 recording of them playing before getting transcribed music, as we will be handling all the backend aspects of this. As such, even the technologically unsavvy should be able to use this application. Furthermore, we aim to make the UI user friendly and easy to read. 

In addition, we aim to make this usable in other environments, not just an academic one, by filtering out the outside noise to allow users to be able to use the application in even noisy settings. As mentioned in our design reviews, we will be testing this application in multiple different settings to hopefully encompass the different environments this website would be used globally. 

Part B (Shivi): Our project can make a cultural impact by allowing people to pass down music that lacks standardized notation. For instance, the traditional/folk tunes (such as the Indian bansuri or Native American flute) are often played by ear and likely to be lost over time, but our project can help transcribe such performances, allowing them to be preserved over multiple generations. This would also help to increase access to music for people from different cultures, promoting cross-cultural collaboration. 

Part C (Deeya): Write on Cue is addressing environmental factors by encouraging a more sustainable system of digital transcription over printed notation – reducing paper usage. Also digital transcription allows musicians to learn, compose, and practice remotely, reducing the need for physical travel to lessons, rehearsals, or recording sessions. By reducing transportation energy and paper consumption, it helps make our product more environmentally-friendly. Also, instead of relying on large, energy-intensive AI models, we are going to use smaller, more efficient models trained specifically for flute music, which will help reduce computation time and power consumption. We will look into techniques like quantization to help speed up inference.

Team Status Report for 02/08/25

As we had proposal presentations this week, we worked hard on finishing up our slides, ensuring that they were done far enough in advance that Ankit, our TA, would be able to give us feedback on our schedule. Here, Ankit had mentioned the possibility of converting our hardware systems (like the microcontroller of an arduino) be done solely in software instead, as it would function a lot faster. We are currently considering this option: Since we would ideally like to convert this system into real time, it would be best for faster processing. However, this could result in changes on how we approach tasks, like rhythm detection. We are planning on reaching out to Ankit again to talk this over further. 

Last week, we also meet with Professor Dueck and other musicians to discuss what our project looks like and how the music department could contribute to our project, such as allowing us to work in her studio to test the flutes in a relatively noiseless environment, which would be best for a bare bones working project. Additionally, she connected us with Professor Almarza, who will be helping us find some flutists to help test our project.

After this, we experimented with looking at some straight tone flute signals and seeing how this pitch would appear in Matlab. This is to get more insight in getting a bare bones project up and working.

Currently, our most significant risk would be switching the project and having unforeseen consequences and then having to backtrack to the hardware idea, which is a little more fleshed out due to past project references. These risks could be managed by discussing this further with our TA and staff, like Professor Sullivan. As such, this might pose a possible change to the existing design, specifically the system spec, to help with the speed. Overall, we feel that we are on track and excited to see where our project tasks us as well as work collaboratively with CMU musicians to get their feedback throughout the process.