
Slope Stabilizing Robot
C7: Sara Chung and Raymond Shen
18-500 Capstone Design, Spring 2025

Electrical and Computer Engineering Department
Carnegie Mellon University

System Architecture

Product Pitch
The Slope Stable Robot is a self-balancing robot to carry water without spilling,

even while moving up slopes. Using real-time analysis powered by an
Arduino/FPGA, the robot dynamically adjusts its platform through linear actuators to
maintain a level surface.

Our critical requirements for the robot can climb up 30º slopes and be able to
carry a 90% (~14 oz) filled 16 oz cup without spilling, and has adjustable speed to
get up slopes and to prevent spilling. During testing, the robot was able to go up 15º
slopes with 90% (~14oz) filled cup of water.

This improves the quality of deliveries and reduces the risk of injuries for chemical
transports. These might who might otherwise struggle with heavy or unstable loads
on inclined surfaces. Our design aims to make chemical transport easier and safer
for workers.

Drive Control
The robot’s drive control system detects when the front wheel is stopped by a

ramp. Upon detection, the system incrementally increases the motor duty cycle until
the robot begins moving forward again. As the robot continues, it reduces the duty
cycle until the rear wheel contacts the ramp, at which point it increments the duty
cycle once more. This method ensures smooth traversal of inclines while allowing the
platform control system to adjust dynamically to changes in the slope angle.
Platform Control

Platform stabilization is managed using a bang-bang feedback controller based
on the IMU’s angle readings. When the platform tilts beyond a ±0.5º deadband,
both linear actuators activate to correct and re-stabilize the platform.

https://course.ece.cmu.edu/~e
ce500/projects/s25-teamc7/

System Description

System Evaluation

Conclusions & Additional Information

We started implementing the system with an Ultra96 FPGA, successfully driving
the motors with the PWM signals and reading from the IMU, but throughout the
process there were many setbacks, so we ultimately transitioned to using an Arduino
Nano ESP32 to complete the whole system.

We control our entire system with the data from the IMU, using the roll angle
detected as well as the linear velocity. For the Arduino, we interface with the IMU
using the Wire.h library. This library allows easy IMU communication through
simplified I2C functions that abstract away low-level protocol details, enabling quick
register access with minimal code. We leveraged the MPU6050 library which
handles all data filtering operations, implementing a complementary filter that
combines gyroscope and accelerometer data to provide stable orientation estimates.
In our initial FPGA implementation using PYNQ, we utilized the I2Cdev library to
access the IMU registers, and implemented the complementary filter in the Python
layer of PYNQ rather than in hardware. This approach maintained software flexibility
while leveraging the FPGA for I/O operations.

For motor control, we generated PWM signals using the ESP32's LEDC
peripheral on the Arduino side, which provided precise timing and multiple channels.
In our FPGA implementation, we designed custom PWM modules in the Zynq
Ultrascale+ hardware using the low-speed GPIO on the Ultra96 board. By integrating
this hardware design into PYNQ, we could dynamically control PWM parameters
through Python while maintaining hardware-level timing precision. Both approaches
successfully interfaced with BTS7960 motor drivers to control our 24V DC motors
and 12V linear actuators, with the Arduino solution ultimately proving more practical
for rapid iteration and system completion.

Unit Tests
The two key components of our system that required unit tests were the PWM

signal generation and the IMU data collection. This was especially important to
realize the capabilities of the Ultra96 FPGA, since we have no previous embedded
experience with this device. At the same time, we also began development with the
Arduino as a backup, so we tested both systems at the same time.
Control System Tests

We conducted many runs, iterating on our control system. Our first control system
was contant wheel speed, while adjusting the platform based on the IMU. Our
second control system was a variable wheel speed, even stopping, while adjusting
the platform based on the IMU. Our final control system is a variable wheel speed,
that stops just before the ramp, and then accelerates again. We also filter our some
outliers in the IMU data, to help with consistency of adjusting our platform. We did
this because the water was spilling when hitting the ramp and there would be outliers
in IMU data that would confuse our control system.

Our overall assessment is that we accomplished a
platform and tilting system and adjustable speed, that is able
to meet the goal of not spilling water while going up a ramp.
Our system is just too slow and is not a viable solution to the
use case due to its speed.

We identified one improvement is to avoid a top-heavy
design by using a motor instead of a linear actuators. The
linear actuators are too long, so it will fall backwards on
steeper slopes. The solution would be to use a motor to
adjust the angle of the platform. This would also allow the
platform to adjust faster since the speed of our linear
actuators is slow. With the faster adjustment, a PID controller
would be optimal for the best accuracy. Additional sensors
could also be used to sense the ramp, and adjust before
hitting the ramp to reduce spills.

Metric Target Actual
Accommodate Varying Slope Drive up ramps from 0° to

30°
Can only drive from 0° to 15°

Accommodate Varying Loads Place 1-4 cups of water on
the platform without
spilling

No spillage for 16 oz cups with
11 oz (~70%) of water and
driving up ramp

No spillage Fill 16 oz cups with 14 oz
(~90%) of water and drive
up ramp

No spillage for 16 oz cups with
11 oz (~70%) of water and
driving up ramp

Use-Case Requirements:

FIG 1: System Architecture

FIG. 3:
Wheelbase

FIG. 2: Platform &
Linear Actuator

Linear Actuators

Platform (Back)

Batter
y

Motor
Drivers

Arduino

IMU

Condition Success Rate (%)
Spill at
Startup

Spill at
Ramp

Spill on
Ramp

Constant Wheel Speed 40 Yes Yes Yes

Variable Wheel Speed 50 No Yes No

Stop at Ramp (filter IMU
Outliers) 90 No No No

FIG. 5: Control System Comparisons

