
1
18-500 Final Project Report: C6 - April 29, 2025

Reef Rover

Maddie Burroughs, Emma Hoffman, Abigael O’Donnell

Department of Electrical and Computer Engineering,
Carnegie Mellon University

Abstract — Reef Rover is a minimally invasive robotic system
designed for detailed exploration of shallow coral reefs through
high quality live feed and image capturing. After each mission,
the laptop-based interface processes video stills to generate a
high-fidelity map of the traversed areas. A machine learning
algorithm analyzes these images to detect coral bleaching so
researchers can identify areas at risk. By enhancing reef
monitoring efficiency and conservation efforts, Reef Rover offers
a powerful tool for researchers and environmentalists,
eliminating the risks and costs of human diving while providing
more detailed data than satellite imaging.

Index Terms — arduino, bleaching, classification algorithm,
computer vision, conservation, coral reef, image recombination,
machine learning, Raspberry Pi, robotics, WiFi

I.​ INTRODUCTION
Coral reefs are some of the most important ecosystems on

Earth. While only covering about 1% of ocean floor, they are
home to over 25% of all marine life. Additionally, coral reefs
protect shorelines from erosion, help form beaches, and
provide homes for marine animals that provide critical
economic and medicinal benefits. Many organisms found in
coral reefs have been discovered to possess medicinal benefits
needed for the development of drug compounds to treat
cancer, arthritis, bacterial infections, and viral diseases.

Climate change, pollution, and overfishing has had a

devastating impact on coral reefs. Over 50% of all shallow
water coral reefs have been destroyed. When sea water
temperature rises, algae that protect the coral from predators
and disease are killed. The absence of this algae leaves coral
susceptible to disease, causing them to lose their color in a
process called bleaching. Bleaching is a key sign of a
struggling coral reef that scientists monitor to assess reef
health. 90% of the largest coral reef, the Great Barrier Reef,
has been impacted by bleaching.

Scientists and conservationists are working hard to preserve

the coral reefs, monitoring these reefs to track the amount of
damage over time. Currently, scientists are using satellite
images or human divers to detect bleaching. Satellite images
can only detect large-scale bleaching, and detection with
divers is a tedious process which can cause damage to the
coral and poses risk to the divers themselves. We have built a
robot, Reef Rover, that can detect coral bleaching on a smaller
scale similar to what a diver could do, but with increased data
collection, analysis, and reduced ecosystem disturbance. The

robot is controlled remotely with a laptop interface that gives
the scientists the ability to scan the coral reef, take photos, and
then recombine these images to create a map of the area. A
machine learning algorithm also analyzes the generated map
and identifies four tiers of coral health: Healthy, Pale, Partially
Bleached, and Bleached. The robot is also equipped with a
temperature sensor enabling scientists to record data tracking
these additional risk factors.

II.​ USE-CASE REQUIREMENTS
In order to ensure practicality and ease of use of Reef

Rover, we’ve identified a number of use-case requirements
which are fundamental to meeting user needs:

1. High-resolution Underwater Camera
 Reef Rover must provide clear, high-resolution imaging to
support scientists and other users in monitoring coral health.
High-quality imaging is essential for effective device
operation and ensures accurate processing by our image
analysis algorithms.

2. Reliable Bleaching Detection Algorithm
 After each operation, Reef Rover will be deploying a
machine learning algorithm to assess the health of coral and
determine risk through color analysis of the stills taken from
livestream video. To ensure reliable monitoring, the algorithm
must achieve at least 90% accuracy in classifying coral health.
A high rate of incorrect classifications would compromise the
system’s effectiveness for long-term monitoring.

3. Map Generation in Less Than 10 Seconds per Square Meter
 Reef Rover must generate maps and complete bleaching
assessments in less than 10 seconds per square meter of
surveyed area. While this performance metric is significant for
large-scale applications, processing occurs in the background
post-mission, requiring no user intervention and having no
impact on real-time usability.

4. WiFi Connection to User’s Laptop
 To ensure ease of operation and local data storage, the
device’s control interface will run on the user’s laptop, rather
than a designated controller, communicating with the robot via
a WiFi connection.

5. Boat Surveying Speed of 3 Inches per Second
 The National Coral Reef Monitoring Program (NCRMP)
defines a standard survey site as 60 square meters (~645
square feet). An in-depth survey of a standard site takes a
human diver approximately 1.5-2 hours to complete. With a
surveying speed of 3 inches per second, our device will be
able to complete a detailed survey of the same area in
approximately 1.43 hours.

6. Power Supply Life of at Least 2 Hours
 At an average traversal speed of 3” per second, Reef Rover

2
18-500 Final Project Report: C6 - April 29, 2025

must be able to operate for a minimum of 2 hours per charge.
This ensures the device can complete a full standard survey
without requiring a battery swap or recharge mid-mission.

III.​ ARCHITECTURE AND/OR PRINCIPLE OF OPERATION
 Reef Rover’s architecture consists of a physical prototype,
electrical hardware, and software. There are three main
subsections - the above water component, submersible, and
laptop interface.

A. Above Water Component
 The above water component features two embedded devices:
an Arduino Uno R4 WiFi and a Raspberry Pi 4. We added the
Arduino Uno after the design report to provide more energy
efficiency and to take advantage of Arduino Cloud, a
pre-configured platform that enables remote interaction over
Wifi. The Arduino controls two rear-mounted propeller motors
for horizontal movement and a stepper motor that adjusts the
depth of the submersible. It also reads temperature data from a
water sensor.

 The Raspberry Pi is dedicated to handling image capture via
the Pi Camera Module 3 and transmitting frames to the laptop.
Both devices communicate wirelessly with the user's laptop
over a local WiFi network.

Fig. 1.​ Electronic Hardware - Arduino Uno R4 WiFi (A),

Temperature sensor breakout board (B), Stepper motor
(C), Rechargeable 12V battery (D), Propellor motor driver
(E), Raspberry Pi 4th Generation (F), Raspberry Pi
Camera Module 3 Cable (G).

B. Laptop Control
 Onshore users interact with the system through two
interfaces: a livestreaming window powered by the Raspberry
Pi and a controller interface hosted on Arduino Cloud. The
livestream provides a real-time video feed, photo capture
capabilities, and, after operation, generates a map of the

surveyed area. User-captured images are stored on the user's
laptop in a pre-specified folder. The program also
incrementally captures images automatically, which are then
sent to our image stitching algorithm to produce the map of
the surveyed area. Lastly, the resulting stitched image is then
processed by the Classification module, producing a final
high-resolution map with heat mapped identification of coral
bleaching intensity.

C. Physical Prototype
 Numerous materials make up the physical prototype of Reef
Rover. We made the base with two parts; a plastic bowl and
foam board. The plastic bowl holds the electronics and spool
system to raise and lower the camera. It also acts as a moat,
since the walls of the bowl go above the foam board base,
protecting the electronics from any leaks into the boat. The
foam board extends the base to increase the size and stability
of the boat. We sealed the foam board with waterproof caulk
to prevent waterlogging the boat and preventing mold or
disintegration. The sides of the boat were constructed with
four foam board corners and plastic walls. We added a
rectangular foam board cut out to the top of the walls to give
the boat a more defined structure. We sealed the sides of the
boat to the foam board base with waterproof tape and
waterproof caulk. Pool noodles on each side and underneath
the boat keep it afloat.

 The two thrustor motors on the back are screwed in
underneath the foam board base. We made a cut out on the
side of the boat for the camera cable and temperature sensor.
The location of this cut out was different from the design
report, where we initially were going to cut a hole through the
foam board base so the camera went straight down. We
realised that there would be no successful way to waterproof
this hole even if we raised the boat up high enough so that
there was an air gap between the base and the water.
Additionally, raising the boat high enough out of water for an
air gap would have reduced the stability of the boat and it
could have tipped over easily. Also, we added a paper towel to
the cable hole to dry off water as the cable came up above the
water into the boat, further protecting our electronics. In order
to maintain balance, we added a counter weight on the other
side of the boat so the boat moved in a straighter line.

3
18-500 Final Project Report: C6 - April 29, 2025

Fig. 2.​ (Above) Physical Prototype - Foam board base (A),

Propeller Motors (B), Foam board corner and waterproof
tape (C), Pool noodle (D), camera cable and temperature
sensor hole, with paper towel (E), Submersible camera
box (F), Water temperature sensor (G).

Fig. 3.​ (Below) Block diagram of the entire system,

showcasing the different connections that were used, the
three components, and what software was individually
developed.

 The underwater component has the camera and temperature
sensor that are connected to our microcontrollers via
waterproof cable. The Arduino connects to the motors and
temperature sensors via wire connection. The Raspberry Pi
and Arduino connect to their respective software interfaces
through a WiFi connection, allowing the user to control Reef
Rover at a distance. Images are then able to be post processed
with the map generation algorithm and machine learning
algorithm.

Engineering Principles:

One of the engineering principles we used to create Reef
Rover was to test subsections before integration to avoid
complicated errors. This was especially important because in
our final product we had to integrate into a small waterproof
area, so debugging after everything was together would not
have been practical. We were able to each work on our
separate software and hardware sections and test their
functionality before we integrated everything, especially the
hardware. Also, we had a large focus on our materials in this
project to ensure we had waterproofness, balance, and
floatation. The materials we used for waterproofing include
rubberized caulk paste, polyethylene based tape, and liquid
latex. To ensure the boat was balanced and stayed afloat, we
added foam board, an already buoyant material and pool
noodles such that more were in the back where the boat was
heaviest. We had to iterate over the design of the spool so that
the hole where the stepper motor was inserted wouldn't wear
down. First, we used wood, but this was replaced with laser
cut acrylic. We spent a lot of time designing the construction
of the boat since we had all the materials, but had to customize
it to our needs.

4
18-500 Final Project Report: C6 - April 29, 2025

 We also used engineering principles to design wireless
communication. We were thinking about either bluetooth or
WiFi for this application, but learned that bluetooth does not
have the bandwidth to transfer images, so we decided to use
WiFi.

Scientific Principles:
 The scientific reason we had to have the above water portion
of Reef Rover was that water disrupts wireless data
transmission. Radio waves which typically transfer data
wirelessly are severely disrupted underwater because of high
attenuation and absorption. Currently, communication across
oceans occurs through tubes on the ocean floor called fiber
optic cables that contain the radio waves. An emerging
communication protocol called Li-Fi would overcome these
obstacles posed by water, but this is out of scope for current
industrial applications and our project [8].

Mathematical Principles:

We used mathematical principles when evaluating a number
of our design requirements.

OpenCV offers two methods of key feature detection (SIFT

and ORB) as well as two methods of image stitching
(Panoramic and Scan). Our selection of which methods to use
in our final post-processing algorithm was guided by
mathematical evaluation of each method’s performance. A
series of controlled trials were conducted on the four
permutations that can be created by pairing one feature
detection method and one stitching method. For each
permutation, we conducted 15 trials, recording the square
footage surveyed, time taken to stitch the image, and whether
or not a final image was created successfully. The overall
results are depicted in the graph below. Ultimately, we
selected the SIFT/Panorama algorithm, which demonstrated
the second-fasted average time per square meter while
significantly also outperforming the fastest method in
reliability.

 When implementing our ML algorithm, we tested several k

values, including 3, 5, and 7. We decided that with the size of
our training data, in order to prevent overfitting, that 5 was an
appropriate number of neighbors to maximize our accuracy.
Additionally, the program first averages the RGB value of the
photograph in groups of 10x10 pixels, and then classifies each
group individually. These individual classifications are
represented in the output image, and then each output image is
labelled in a .txt file with their corresponding overall
classification.

We also applied mathematical reasoning and unit analysis
when selecting a power supply. Reef Rover was designed to
operate on a single charge for at least two hours. To meet this
requirement, we calculated the estimated power draw of each
electrical component, resulting in a total system power
consumption of 29 watts. This value was converted to
amp-hours, guiding our decision to use a 5.2Ah power supply
– sufficient for two hours of operation with a reasonable
margin. Exact calculations are provided in Section IV.8.

IV.​ DESIGN REQUIREMENTS
To meet the use-case requirements, the following design

specifications outline the technical choices and constraints
necessary for Reef Rover’s functionality:

1. High-resolution Underwater Camera
 To achieve high-quality imaging, the system must support
high-resolution video capture. This will be accomplished
using the Raspberry Pi Camera Module 3, which supports the
industry standard of 330 PPI resolution, ensuring detailed and
accurate image capture.

2. Low Control Latency
 To enable real-time remote operation, the system must
maintain a communication transmission latency below 300ms.
Reef Rover will achieve this by rapidly transmitting the
livestream video feed from the boat to the user and relaying
user commands back to the boat via a WiFi connection. The
latency can be controlled by adjusting the frames per second
(FPS) to allow for smooth live video.

3. Bleaching Algorithm
 The system must correctly identify healthy coral based on a
predetermined range of pink and blue colors. This will be
achieved by preprocessing the images taken by our robot to
remove the background color of the water and then taking an
average of the color value over a 10x10 pixel square. The
algorithm will then identify both the color of the coral and the
stage of health (healthy, pale, partially bleached, bleached).
We will run a series of tests on both edited pictures with
different color samples and images from the camera to
measure the accuracy of the classification algorithm at the
minimum threshold of 90%.

4. Map Generation Algorithm
 The system must generate a complete survey map

5
18-500 Final Project Report: C6 - April 29, 2025

post-operation, processing each square meter of surveyed area
in less than 10 seconds. Map generation will be performed
using the OpenCV library, leveraging the SIFT algorithm to
detect keypoints within the images. These key points will be
used in OpenCV’s panorama stitching mode to align and
merge images into a seamless map well within this time
constraint.

5. Underwater Unit Size
 To minimize risk of damage to the coral reef and reduce
ecological disturbance, Reef Rover’s underwater sensor unit
must not exceed dimensions of 6” x 4” x 4”.

6. Deployment Depth
 Coral reefs are primarily found near the surface of the ocean,
meaning that the underwater component of Reef Rover does
not need to deploy to significant depths. For the purposes of
this project, we have set a maximum depth of 2 feet. This
depth is sufficient for testing and development, while allowing
flexibility for future scaling in real-world deployment.
Increasing this depth would add cost without introducing any
new technical challenges.

7. Operable WiFi distance
 For testing purposes, Reef Rover must maintain a reliable
WiFi connection at distances up to 10 feet. While this distance
can be easily increased for real-world deployment, doing so
would introduce additional costs without adding significant
technical complexity or functionality. For this reason, we’ve
chosen to allocate our budget to other, more impactful aspects
of the project.

8. Power Supply Capacity
 To support a continuous 2-hour survey without recharging,
our power supply must have a minimum capacity of 5Ah. This
requirement is based on the following power consumption
estimates per electrical component:

Raspberry Pi: 5W
Arduino Uno R4: 0.8W
Servo Motors: 5W per motor = total 10W
Stepper Motor: 12W
Camera: 1.5W
Temperature and pH sensor: 0.5W

 With an estimated total power consumption of 29W over 2
hours, the required battery capacity is calculated as:

 (29. 8 𝑊 × 2 ℎ𝑜𝑢𝑟𝑠) / 12 𝑉 = 4. 97 𝐴ℎ

 To provide a margin of error, we’ve purchased a 5.2Ah
rechargeable power supply.

V.​ DESIGN TRADE STUDIES
1. Processing Unit
 The first processor considered was by Nordic Semiconductor,

and it was a device that could transmit video over bluetooth
and WiFi together. At this point, we were still debating
between bluetooth and WiFi. However, it did not have good
input and output pin connections for the motors. The next
processor we looked at was the Raspberry Pi. It had WiFi
capabilities and a simple connection to cameras and motors.
We were debating next whether we wanted to use the
Raspberry Pi 4 or 5. The fifth generation RPi had faster
processing speeds with a newer CPU and GPU, but we had
immediate access to a RPi 4 in the ECE inventory, so we
wanted to use that one first to see if it worked for our use case.

 Ultimately, the RPi 4 met our needs for live streaming,
however, was having issues being able to control our motors.
The live stream was operating with a high frame rate, which
made it hard to send requests to control the motors at the same
time. We tried to implement threading to control the motors
and live stream separately, but we were unsuccessful. We
opted to add an Arduino Uno R4 with WiFi to handle the
motors and temperature sensor. The Arduino also is more
energy efficient at controlling the GPIO pins, and we had
access to a predefined wireless communication service called
Arduino Cloud. We could easily set up motor control with this
interface. This meant that users now interacted with two
interfaces, however by putting the computer in split screen, we
could easily operate both interfaces at the same time.

2. Communication Method
 We were deciding between using Bluetooth or WiFi for our
communication method. Ultimately, bluetooth was not going
to have the bandwidth necessary to transmit video or photos,
so we are using WiFi. WiFi also has longer range connection,
and scientists already have WiFi on their research boats to
communicate with people on land and run data analysis
software. The WiFi they use is unique because instead of
connecting to a cell tower it connects to a satellite.

3. Power Source
 To determine the appropriate power supply, we first
estimated the total power draw of our system and the required
runtime per mission. Our system consumes approximately
29W in operation. Based on Reef Rover’s estimated speed of 3
inches per second, we calculated that it would approximately
1.43 hours to traverse a standard survey site. Based on these
metrics, we need a 12V supply with a capacity of 4.97 Ah.

 We selected a 12V power supply with a 5.2Ah capacity,
capable of delivering 29W continuously for 2 hours. While we
considered larger power supplies, our chosen capacity
minimizes cost and supports a full survey being conducted on
a single charge.

4. Stepper Motor
 To control the z-direction movement of the underwater
system, we need a motor capable of precise, low-speed
movement to deploy and retract the unit; a stepper motor is

6
18-500 Final Project Report: C6 - April 29, 2025

ideal for this application. We selected a NEMA 17 stepper
motor, based on its 59 Ncm holding torque, which exceeds our
needs, calculated below:

 Given that the underwater component has a maximum
weight of 2 lb, the force required for deployment and
retraction is:

 2 𝑙𝑏𝑠 × 9. 81 𝑚/𝑠2 = 0. 907 𝑘𝑔 × 9. 81 𝑚/𝑠2

 = 8. 899 𝑁

 Assuming a 2-inch spool radius, the minimum holding
torque needed is:

 8. 899 𝑁 × 2 𝑖𝑛 = 8. 899 𝑁 × 0. 0508 𝑚
 = 45. 21 𝑁𝑐𝑚

5. Stepper Motor Driver
 We need a driver to control the motor. Three of the most
common drivers for a NEMA 17 stepper motor are the A4988,
DRV8825, and TMC2209. In choosing a motor driver, we
prioritized cost and precision, while also considering ease of
use and noise levels. Ultimately, we chose to use the
DRV8825. While this driver is more expensive than the
A4988, it offers quieter and more precise operation, allowing
1/32 microstepping, compared to the A4988 1/16. The
TMC2209, on the other hand, offers 1/256 microstepping
which is significantly more precise but exceeds our necessary
level of accuracy. Additionally, the TMC2209’s higher cost
and more complicated setup made it less practical than the
DRV8825.

 Lastly, the precision afforded by the DRV8825 driver means
that we no longer need to include an incremental encoder to
the stepper motor. We originally planned on incorporating an
encoder to ensure high levels of precision, however, our
chosen motor and driver should allow for very little (< 10mm)
positional error to be accumulated over two hours of
operation.

6. Propellor Motor
 In our design review, we discussed servo motors that were
purchased to control the forward motion of the boat. However,
these turned out to not be waterproof as advertised, so we
went back to the drawing board to look for a new motor. We
did not want to replace the motor driver, so we had to find a
waterproof thruster motor that was brushless. After some
research, we settled on a remote controlled boat thruster, that
is energy efficient, can be powered with 12V, and does not
have too much power so we can keep the speed of the boat at
the desired 3 inches/second. Another option we had would
have been suitable except it operated at 200 horsepower, too
much for our application.

7. Propellor Motor Driver
 The L298N was chosen because it can protect the Raspberry

Pi from directionality fluctuations from the servo motor. Also,
the L298N amplifies the small current from the GPIO pins on
the RPi to be large enough to operate the servo motor. The
L298N can run two servo motors at once, which is perfect for
us because we will be using two servo motors. It comes with
an enable pin in addition to the regular input to provide
additional control. It can be configured to change the direction
of rotation of the servo motor, which we can use to put the
boat in “reverse gear” to go backwards if needed. We did not
initially plan to implement backwards motion, but this
component gives us the ability to if we end up needing it. The
L298N can take in smaller amounts of power from the RPi to
control the speed of the motor, which will allow us to adjust
the speed of the boat or modify our turning mechanism if
needed by having both motors running but one at a lower
speed than the other.

8. Temperature Sensor​
 In order to measure the temperature of the water, we ordered
the GAOHOU DS18B20 Waterproof Digital Temperature
Sensor with Adapter Module. We chose this model because it
is waterproof and the length of the cable would allow us to
raise and lower the sensor with the camera unit. While we
initially planned and ordered a sensor that would measure both
pH and temperature, we could not accurately calibrate the unit
and limited waterproof options for replacements resulted in
the decision to prioritize one of these values. As temperature is
more indicative of coral bleaching, we decided to go with this
option.

9. Machine Learning Algorithm
 As we discussed in our design review for the machine
learning algorithm, we used the K-nearest neighbors
classification algorithm in order to take advantage of
supervised learning techniques. As our ‘heat mapped’ output
image produces a ‘clustered’ color result, we found that this
was a reliable way to process and represent data. The
algorithm works by breaking the image up into smaller groups
and then classifying each sub group.

10. Map Recombination Library
 After completing initial research into existing libraries –
primarily focusing on Python libraries, as this is the language
that a majority of our codebase will be written in – we
identified two promising options, each having distinct
advantages and trade-offs.

 The first library that we considered was COLMAP, which
provides advanced capabilities beyond image stitching such as
Structure-from-Motion (SfM), Multi-View Stereo (MVS), and
3D map generation from images. While these features offer
interesting possibilities and additional insights for researchers,
they require significantly more computational power.
Achieving our target processing time of 10 seconds per square
meter would be difficult using COLMAP’s image stitching
capabilities alone, and would likely be infeasible if we

7
18-500 Final Project Report: C6 - April 29, 2025

implemented any of the additional features it supports.

 The other library that we evaluated was OpenCV. While this
library doesn’t offer many of the advanced features that
COLMAP does, it does support efficient image recombination.
OpenCV's image stitching is designed for panoramic images,
or images which connect in only one direction, meaning that
we will need to develop an algorithm which adds support for
image stitching both horizontally and vertically. However,
even with this added implementation effort, OpenCV offers a
clear computational advantage.

 After considering both libraries, we decided to use OpenCV
in our final implementation. Although COLMAP offers many
features that could be valuable additions in the future, they
exceed the needs of a standard coral reef survey. Since the
NCRMP typically conducts 2D analysis, OpenCV aligns best
with our project’s objectives while also meeting our strict
computational constraints.

VI.​ SYSTEM IMPLEMENTATION
 As mentioned in the system architecture section, we had
three main subsystems in our design - the above water boat,
the laptop interface, and the underwater component. We will
go into detail about the implementation of each part of our
design.

A. Raspberry Pi Live Stream Interface
The first microcontroller on our above water subsystem is

the Raspberry Pi 4th Generation, which controlled image
capture and transfer. We used the Raspberry Pi Camera
Module 3 that connected to the onboard camera port to take
the images. This camera has a 12 megapixel lens with
autofocus, and is marketed as Raspberry Pi's highest quality
camera. In order to reach our depth requirement, we ordered
special camera cables that were 1 meter long. The cable was
waterproofed with waterproof tape and then sealed with two
layers of liquid latex.

The Raspberry Pi was configured on the SD card to connect

to an iPhone hotspot network to wirelessly transfer images to
the computer. We were able to SSH into the RPi and write a
code script that ran on the Pi which turned on the camera,
responded to requests sent from the computer, and sent still
images to the computer that were captured on the camera. We
used a socket server that was made with the Python library
socket. The host computer script would send a request to the
Pi to capture an image. Then, the script in the Pi would receive
the command, use the library Picamera 2 to take the photo,
and then send the bytes back to the host computer.

 The current workflow is described below.

Fig. 4.​ Users flow through the Pi interface. Improvements can be made in

the future to eliminate the SSH step and automatically run the script on
the Pi.

 We ran into issues with the color of the images coming into
the computer, since the Pi was using a different pixel color
representation. We were able to remedy this by using a built-in
function to switch the pixel color representation before it was
displayed and saved on the computer. Additionally, we found
that the images were darker and more blurry than desired. To
remedy this, we configured the camera settings on the python
code in the Pi to increase the brightness and focus more on
objects about 12 inches away from the camera, where we
would expect coral to be most of the time.

B. Arduino and Arduino Cloud
 The addition of the Arduino Uno R4 WiFi was made after
the design review, due to complications with motor commands
interfering with the live stream commands. We wanted the
boat to be controlled without interrupting the live stream, and
to accomplish this we added an Arduino. We took advantage
of the Arduino Cloud, a predefined wireless control system, to
control the I/O pins on the Arduino Uno R4.

 When we first added the Arduino, we tried using the
Arduino Nano ESP32, which is a smaller Arduino with WiFi
capabilities. However, we ran into many bugs using this. First,
one of the Arduino Nano’s ports broke after only a few uses.
Then, once we replaced the broken Nano, we tried to add our
stepper motor, however with the same code and same wiring
compared to using an Arduino Uno, the Nano ESP32 was not
able to power the stepper motor correctly. We spent a lot of
time trying to debug this particular section of integration, and
ended up having to scrap the Nano entirely. We then ordered
the Arduino Uno R4 with WiFi, since the Arduino Uno we had
did not have WiFi capabilities.

8
18-500 Final Project Report: C6 - April 29, 2025

Once we had all of the hardware wired to the Arduino Uno R4
with WiFi, we had to integrate the stepper motor with Arduino
Cloud. We had to adjust the code so that the stepper motor
activated based on a defined variable that changed when the
user pressed a button widget on the dashboard. We spent a lot
of time debugging this as well because the delay time we used
was critical, and we were sending commands to the Arduino
too quickly and the stepper motor was not making a full
rotation. Once we added a longer delay between the
commands to make a step, we were able to control the stepper
motor with the Arduino Cloud.

 We also added a temperature sensor to the Arduino so that
the user could see the temperature in real time and correlate
the water temperature with coral health. The temperature
sensor was mounted onto a breadboard with a power source,
ground, and data line. We connected the dataline to digital pin
4 on the Arduino and we read the temperature once every
second. We used a code function from the sensor developers to
calculate the temperature from the data received, and
displayed this information on the Cloud dashboard. We also
included a graph that displayed the temperature over time.

 The propellers were also controlled by the Arduino Cloud.
We created two variables on the cloud that controlled the
boat's forward movement and turns. The first variable
controlled straight forward movement. This was a scale bar
with values of 0 to 3. When the user set this to be 0, the
propellers would stop moving. The values 1 to 3 corresponded
with different movement speeds (1 being the slowest and 3
being the fastest). On the back end, this one variable would
control both propellers. When the user changed this variable,
the Arduino would send a PWM signal (using the analogWrite
command) to both motors. The value of this signal was
determined by extensive pool testing to see which values made
the boat move as straight as possible. Since the camera was
coming down on the right side of the boat, the right motor
propelled faster to combat the weight and resistance on the
right side of the boat. Despite our PWM signal tuning efforts,
we could not overcome the weight of the camera with motor
speed alone, so we added a counter weight on the left side to
improve our control. This component was made identically to
the waterproof camera box that we constructed, substituting
the internal camera component for weights. This ensured the
counter weight was nearly identical to the component it was
balancing against.

 We had one more variable, which was called “make turn,”
which turned on the right motor only, turning the boat around
so the user could start surveying in the other direction.

 The Arduino Cloud had unexpected drawbacks, including a
limit of 5 variables per device on the free plan. In order to add
more variables, we had to purchase a subscription. This
limited our control of the motors. At first, we had two scale
bars that controlled the right and left motor respectively, but
this was not intuitive for users and it was impossible to turn
the motors on at the same time, which made the boat never go
in a straight line. Future work could be done to improve the

control of the boat by integrating a remote control with more
precise motor movement.

Fig. 5.​ The Arduino Cloud interface. The make turn variable (A), the

forward motion scale bar (B), the up direction camera button (C), the
downward camera button (D), the numerical temperature in fahrenheit
(E), and the temperature over time (F).

 The user will use these two interfaces, the live stream from
the Raspberry Pi and Arduino Cloud at once to control Reef
Rover. Below is an example of the two interfaces on a laptop
in split screen. The split screen made the configuration of the
widgets different from when it was full screen, which was
another drawback to the Arduino Cloud interface that we tried
to overcome but were limited by their software.

Fig. 6.​ The live stream image (left) with the Cloud interface (right)

C. Machine Learning
 For the machine learning section, we used a K-Nearest

9
18-500 Final Project Report: C6 - April 29, 2025

Neighbors algorithm in order to utilize supervised learning
techniques. The program was designed to create an overall
‘heat map’ representation of coral bleaching by running on the
output of the combined images, or to run on the entire folder
of images collected from the livestream to help scientists
pinpoint different areas of bleaching.
 As part of the image processing, the program also removes
the image background to prevent darker ocean colors from
skewing the results. It works by first sectioning each input into
10x10 pixel groups, which was chosen in order to both retain
the integrity of the initial image while maintaining a
reasonable run time on potentially very large batches of
images. The average RGB value of each section is then taken
and used to classify that section.
 Our program was designed to be most accurate on two types
of coral, pink or blue. Once each section passes through the
first KNN classifier, where it is assigned one of these labels, it
then goes through a second layer fine tuned for either pink or
blue coral where it is labeled as either healthy, partially
bleached, pale, or bleached.
 By splitting the images into smaller sections, we are still
able to achieve the benefits of a clustering algorithm such as
identifying healthy and unhealthy subsections of coral. We
also utilized several libraries in this process, namely
Scikit-learn for machine learning, numpy, PIL and Rembg for
image processing, and os, io, and collections for data
management from the user's computer.

D. Map generation
 Our map generation algorithm takes in a folder of images
automatically captured by the livestreaming interface during a
survey and generates a high-resolution composite map of the
surveyed area. This subsystem is implemented entirely in
software and leverages multiple OpenCV functionalities. It
supports variations in image overlap—caused by inconsistent
survey speed—as well as changes in lighting and perspective.

 The algorithm centers on the OpenCV cv2.Stitcher_create()
interface, which supports stitching using either Panorama or
Scans mode. Before stitching, each image is analyzed to detect
key features using either the SIFT (Scale-Invariant Feature
Transform) or ORB (Oriented FAST and Rotated BRIEF)
methods.

 Based on the analysis detailed in Section III, Mathematical
Principles, we selected the SIFT method for feature detection
and the Panorama mode for stitching. Panorama mode stitches
images in a single linear direction, ideal for constructing wide,
continuous image sequences. To accommodate this, our
program first compares keypoint matches to organize the
images into rows that represent individual survey passes.
These rows are stitched horizontally using Panorama mode
and then vertically combined to produce the final stitched
map.

 Through iterative testing, we identified two key
optimizations. First, adjacent images often contained more
overlap than necessary, allowing us to skip redundant frames.
We introduced an image_step parameter to stitch only every
nth image within a row, significantly improving performance
without sacrificing accuracy.

 Second, we observed that while Panorama mode was more
reliable overall, it occasionally failed on certain image
batches. Interestingly, these failures were often resolved by
switching to Scans mode, which, while generally less
successful, handled some edge cases better. To implement this,
we added a try/except block that defaults to Panorama mode
and falls back to Scans mode upon failure.

 To minimize reliance on the less consistent Scans mode, we
introduced a “batch stitching” method: each row of images is
split into smaller batches (based on a batch_size
parameter), which are stitched individually. This limits the
number of images per stitch attempt, improving the chance of
success and allowing recovery from partial failures. The final
map is built by recursively stitching the resulting batch
outputs.

 The overall pipeline of this algorithm is as follows:
1.​ Accept command-line parameters to override default

values (i.e. image_step and batch_size); --help
provides usage guidance

2.​ Prompt the user to enter a valid image folder path
3.​ Load every nth image from the folder (where n =

image_step), resizing them to a consistent width
4.​ Apply SIFT feature detection
5.​ Organize images into rows based on keypoint overlap
6.​ Divide each row into smaller batches of size

batch_size
7.​ Attempt to stitch each batch using Panorama mode; if

it fails, fall back to Scans mode
8.​ Recursively stitch all batch outputs to produce a

single final image

E. Spool design
 To allow for the user to adjust the depth of the underwater
camera during operation, we implemented a custom spool
system controlled by a stepper motor. This subsystem raises
and lowers the camera via (un)winding the camera cable.

 The spool was fabricated from laser cut acrylic and designed
to maintain consistent tension on the camera cable. This
allowed for deterministic depth based on spool position, and
prevented damage to the cable. A stepper motor, controlled by
the Arduino Uno, drives the rotation of the spool. This motor
was chosen for its ability to precisely control rotational
movement, allowing for fine-tuned adjustment of the camera’s
depth based on survey needs.

 One key design challenge that we encountered during
designing this subsystem was that, due to the length and
rigidity of the RPi camera module’s cable, the cable cannot

10
18-500 Final Project Report: C6 - April 29, 2025

twist freely during spool rotation without risking damage or
disconnection from the RPi. To resolve this problem, we
mounted the RPi directly to the side of the spool such that the
RPi spun with the spool. This ensured that the anchored end of
the camera cable rotated in sync with the spool itself, avoiding
torsion and maintaining a reliable data connection.

VII.​ TEST, VERIFICATION AND VALIDATION
 To test our implementation and verify that it satisfied the use
case requirements, once we built Reef Rover we tested in the
Cohon University Center pool. We used dive toys to act as our
coral, since they are often vibrant colors. We tested the
latency, operable distance, and deployment depth. We tested
other design requirements out of the pool, including the live
stream and map generation latency, the classification accuracy,
and image resolution. Due to time constraints, we were not
able to test the battery life at once, however we were operating
the boat for a total of 4.5 hours of pool testing before the
demonstration, and then another hour of demonstration before
our battery died, which was more than enough to accomplish
our theoretical scan of about 2 hours.

A. Machine Learning Model Accuracy
 In order to test the performance of our Machine Learning
model, we used a database of over 900 pre classified images
of coral reefs. To develop the training data, which used RGB
data points, we manually sorted through images of pink and
blue hued coral and used a color picker to sample data points.
Once these points were collected, we validated the
performance of our model on 100 of the pre classified images,
split evenly between healthy and unhealthy coral. These
images were processed in ten tests using ten images each, and
the overall classification of each image was written to a .txt
file at the end of each test. As we were using four categories (
healthy, partially bleached, pale, and bleached) and our sample
dataset only had two categories (healthy and bleached), we
considered results of healthy and pale to be healthy and results
of partially bleached and bleached to be bleached for
validation purposes.

 We also ran the program on images we took during our in
water training of Reef Rover. Here, we were limited based on
the colors available to us in the objects we were using in the
pool, as these were all fairly vibrant colors, most of our items
were classified as healthy, however we were able to place
more lightly colored objects which were classified in one of
the bleached groups. Overall, we were able to reach an 84%
success rate for our algorithm, which falls slightly below our
goal of 90%. While we were under this testing threshold,
issues such as differences of coral depth affected the lighting
on the coral pictures, making it hard to find a standardized
way to evaluate each image. Reef Rover was designed to
operate in shallow water, where the coral will remain more
‘true to color’ underwater. With more time, we also could

have tested a variety of more complicated models which may
have resulted in an improved performance.

B. Live Stream Latency Design Requirement Results
Our design goal was for our live stream latency to be less

than 300 ms. This would give users real time feedback on
where Reef Rover was, making surveying easier and avoiding
crashes into coral. We used the time library in Python to
measure how long it took for the program to send a request to
the camera until all the image bytes were received by the
computer. We took the average latency for 25 frames and
found this value to be 70 ms, much below our maximum
requirement.

While we were testing in the pool, we found that the latency

was fast enough to see where the boat was in the water. We
found it challenging however to understand which direction
the boat was pointing in by just the image of the bottom of the
pool. To improve the users understanding of where Reef Rover
was, we could add another camera to the front of the boat.

C. Image Stitching Latency
One of our design requirements was to reduce the post

processing time by our map generation algorithm running with
a latency of no more than 10 seconds per square meter
surveyed. This was defined as the total stitching process time
divided by the area surveyed.

This was tested by using the Python time library to record

the duration of the stitching process for each image set or
survey. This duration was then divided by the known
approximate area of the survey (in square meters), which was
measured during test surveying sessions. Multiple trials were
conducted across different surveys, with several repetitions per
image set to account for variability in processing time due to
hardware performance and image content.

The results of these trials were averaged to compute a

representative stitching latency. We observed some variation
between trials depending on lighting conditions and image
complexity, but the final average latency across all trials was
7.83 seconds per square meter.

Normally, images that scientists take must be individually

inspected. Now, we are able to combine hundreds of images
together for comprehensive review. This metric meets our
design requirements, and confirms that our selected OpenCV
methods provided the intended balance between accuracy and
efficiency, suitable for the target use case of Reef Rover.

D. Deployment Depth Result
Our design requirement was to be able to deploy our camera

at least 2 feet below the water. We tested this by fully
deploying the camera and measuring the depth it can reach.

11
18-500 Final Project Report: C6 - April 29, 2025

We had a depth of 25 inches, which allowed us to meet this
design requirement.

We noticed in the water that the camera would sometimes

float upwards in the water, but it never went farther than the
cable would allow. This prevents the camera from accidentally
knocking into things below it, but it could be higher than the
user anticipates. This control is limited due to the fact that we
needed to pull the camera up and down and the camera cable
is very flexible.

E. Operable Distance
Our design requirement was to be able to operate the boat

from at least 10 feet away, simulating how a researcher would
be far from Reef Rover during surveying. To test this, we
turned on all of our systems and connected them to our WiFi
network, moving the source of the WiFi and the computer
away from the boat. We then turned on the live stream and the
motors, and began to operate as usual. We moved as far away
as we could in the room we were in (27 feet) and the controls
were working just as if we were next to Reef Rover.

This satisfies our use case that users need to be able to

operate the boat from a long distance away. In the ocean,
Researchers often cannot drive right alongside the robot, so
this is an indicator that this could be scaled up well to even
farther distances.

F. Image Resolution
Our design requirement for image resolution was 300

pixels per inch (PPI), which is a metric used to define an
image as “high resolution.” To test this, we would inspect a
saved image from the underwater camera and see what the PPI
was. When we inspected our images, no matter how clear the
image was, the PPI was 72. We compared this to a saved
image taken on a GoPro, and these crisp images still had a PPI
of 72. We realized that this was not a useful metric in
determining whether an image was “high resolution.”
Moreover, if we had images that were 300 PPI, this would
slow down our map generation and machine learning
algorithms significantly, likely making us unable to meet these
requirements. A better metric for camera quality in our use
case would be color accuracy, which images can be compared
to predefined charts to ensure the colors are accurate. This
would ensure that coral color is being accurately recorded.
Another important camera quality would be image sharpness,
which would allow the user to be able to see detail within the
image enough to identify predators on the coral or other coral
disease besides bleaching [9]. We were limited in our camera
options because we had to be able to connect the camera to an
Arduino or Raspberry Pi, because we cannot transfer images
wirelessly directly from an underwater camera.

VIII.​ PROJECT MANAGEMENT

A. Schedule
Approximately halfway through our implementation period,

we created an updated Gantt chart, which is attached in the as
Table II. While we initially followed the timeline outlined in
our design report, several delays affected our overall project –
most notably waterproofing.

The propeller motors that we originally purchased were

marketed as waterproof however, immediately upon delivery
we realized that they were not waterproof and would not meet
our needs. The ordering and delivery of a suitable replacement
immediately put us about 2.5 weeks behind schedule. Despite
this setback, as well as multiple following, though smaller,
setbacks that resulted from water damage to our underwater
camera, we ultimately recovered enough time to complete all
core functionality by the final project demo and poster session.

B. Team Member Responsibilities
Abigael was primarily responsible for the machine learning

algorithm for classifying coral health, including both
developing and validating the model. Additionally, Abigael
worked on the integration of the temperature sensor,
construction of waterproof camera cables, and was our go-to
in the pool team member during testing sessions. Abigael took
the lead on waterproofing our entire boat system, ensuring that
no water leaked or splashed into the main, above-water
section, damaging any electronics. Abigael took the lead on
our final video as well.

Emma was responsible for the construction of the boat boat,

as well as the processor as a whole. Processor responsibilities
include the setup and testing of all motors, WiFi connection,
and live stream video set up. This involved a last minute pivot
from using an RPi to Arduino for motor control, which Emma
researched and set-up a new interface via Arduino Cloud. She
also created the user interface and backend connection to
allow remote control of the hardware systems. Emma took the
lead on the final report as well.

Maddie was responsible for the map generation algorithm

portion of post-processing, which was modified throughout
the implementation process to no longer require the capture of
still images from the livestream feed, as the feed automatically
saved as images rather than video. Additionally, Maddie
designed and constructed the mounting system for all of the
on-boat hardware, including the spool system. Additionally,
Maddie was our team’s soldering expert, transferring all
electronics from protoboards to perfboards. Maddie took the
lead on the final poster as well.

Fig. 7.​ Schedule example with milestones and team responsibilities

12
18-500 Final Project Report: C6 - April 29, 2025

C. Bill of Materials and Budget
As our project developed, we went through several design
iterations and pivots, mostly related to the need to waterproof
our product. We used almost every item purchased, with the
exception of the first set of motors we ordered which were not
waterproof as marketed, and a cover for our underwater
camera which was also not waterproof. Additionally, our first
temperature and pH sensor ended up not working. Most of our
unexpected costs came from different waterproofing methods.
Please refer to Table I for a more detailed description of the
bill of materials and the budget.

D. TechSpark Usage
Our team used Techspark, as well as IDeATe, as a resource

for laser cutting acrylic components including the underwater
camera box and the spool/hardware mounting. We also
borrowed tools from TechSpark such as tape measures, hot
glue guns, scrap metal, tape, and much more. No construction
or testing took place in Techspark.

E. Risk Management (used to be Risk Mitigation Plans in
Design Document)

The largest risk associated with our project was the nature
of it happening in the water. This presented a high probability
of us damaging various electronic components. In order to
mitigate this, we did intensive research on waterproofing
techniques, including various tapes, liquid latex, silicone
caulk, and more. We also opted for pre-waterproof
components when possible, otherwise using a variety of
methods to waterproof components ourselves. Despite these
efforts, both our camera and camera cable sustained damage a
number of times throughout the process. We anticipated this,
however, and preemptively reduced the strain this damage
would cause to our project by opting for cheaper components,
allowing us to purchase multiple initially so that we had
replacements on hand. At no time in the process did we run
out of a component due to it having been damaged by water.

The second risk that we associated with our project was our

underwater images not being high-resolution enough for our
post-processing to be successful. In order to mitigate this, we
prioritized having scaled down versions of our post-processing
code completed early in the process. This allowed us to
continually test, and have a baseline expectation for the
results, anytime a modification was made that impacted image
capture quality. Luckily, we were able to successfully
waterproof the camera in such a way that allowed for clear
enough imaging.

IX.​ ETHICAL ISSUES
 Reef rover attempts to improve coral ecosystem monitoring
so that scientists have reliable and accurate data.
Understanding when coral reefs are at risk and giving
scientists more time to react has many positive effects. As

mentioned earlier, coral reefs have attributes that are used in
medicines to treat human diseases, improving public health.
Coral reefs protect shorelines by taming waves, which
increases public safety by protecting people from dangerous
currents. As for public welfare, coral reefs protect marine
ecosystems that are a major food source.

 Coral reefs exist in oceans all over the world, and they are a
major resource for countries who have reefs within their
borders. For example, Mexico has many coral reefs, which
protect the land from flooding. They estimate that for every
1m of coral lost, 15,000 people will be at risk for flooding
with annual damages of 452 million USD. Worldwide, coral
reefs save 94 million USD in flooding damages annually. This
phenomenon occurs because coral reefs reduce wave power by
about 97%.

 Coral reefs are a cornerstone of many cultures, allowing
fishing to become a prominent occupation and source of food.
Research has shown that every square kilometer of coral reef
can provide between 5 and 10 tons of fish annually. This is a
source of food and income for local communities, which has
an estimated local economic benefit of 6.8 billion USD a year.
In addition, 97% of these fishermen live in developing
countries, meaning coral reefs are a major source of
independence and survival for many people around the world.

 Socially, coral reefs attract many tourists to the tropical
coastlines. 350 million people travel to see coral reefs
annually. Their beauty is unmatched, and this tourism also
brings in billions of dollars in revenue [10].

 While Reef Rover aims to give scientists a resource to
preserve these reefs for all of the ethical reasons listed above,
we must ensure that we designed Reef Rover in a way that
does not harm the reef or that Reef Rover can’t be easily used
with ill intentions. We limited the size of the submersible so
that it would have the smallest impact on the ocean life
underwater. However, there are some improvements that could
be made to limit the chance of accidental reef contact. For
example, we could add sensors to the submersible to detect
when it is within a certain distance of a coral and
automatically stop the boat from moving towards it. Also, we
could protect the software with passwords so that data cannot
be tampered with.

 Other future design considerations would be to use materials
that are very durable so that parts do not contribute to ocean
pollution. Additionally, more metrics should be determined to
define what areas Reef Rover can be used for, and ensure that
Reef Rover is not deployed in areas it is not intended for. If it

13
18-500 Final Project Report: C6 - April 29, 2025

were to be deployed in an area where coral is too deep, for
example, the data collected could be less accurate than
desired, harming scientific research. Ultimately, misuse of
Reef Rover could harm ocean life and, indirectly, humans by
continuing to put coral reefs in jeopardy. Some ethical
concepts that arise are accountability, if researchers deploy the
device improperly and do not take responsibility for this
misuse. Trust, if researchers misconstrue data collected by the
device. Responsibility, if the device is not used in a moral or
ethical manner. Bias, if certain reefs that are in a geographical
region are not monitored because of political conflict or racial
discrimination. Overall, Reef Rover’s mission is to combat the
effects of climate change on coral reef ecosystems, but there
are critical ethical considerations that need to be taken into
consideration for scaling up this device.

X.​ RELATED WORK
There is a move to use robots to help scientists monitor and

understand coral reef ecosystems. In the article “A systematic
review of robotic efficacy in coral reef monitoring techniques,
Marine Pollution Bulletin,” many types of robots are discussed
including underwater vehicles (UAVs), and aerial robots.
Aerial robots take photos from satellites to detect bleaching.
UAVs are newer technology, and the category that Reef Rover
falls into. There are three categories of UAV: the ROV, AUV,
and HUV. ROVs are remotely operated vehicles, which is
what Reef Rover is. They are medium sized robots that are
manually launched by scientists. AUVs are autonomous
underwater vehicles that are deployed and collect data on their
own, usually on the ocean floor. These robots have complex
algorithms that change the robots motion and can even use
sound in the environment to guide themselves.HUVs, or
hybrid underwater vehicles, are a combination of the two.
Reef rover will be a ROV. Some of our use case requirements
have been inspired by a robot and algorithm that detected
coral only, with an 89% accuracy, and a battery life of 2 hours.

XI.​ SUMMARY
 Reef Rover is a laptop controlled water robot that features an
above water boat design with a submersible sensing and
camera unit connected to the boat. Our design uses image
recombination and machine learning to classify surveyed areas
into different levels of coral health in order to help researchers
monitor levels of coral bleaching over time, which is an
important indicator of overall ocean health. Reef Rover
provides a video livestream and real time temperature data,
and map generation to the user with low latency. There were a
few areas where Reef Rover could have improved, including
implementing a higher resolution camera, a remote control
with more movement precision, and a backend software
connection between the live stream and map generation
algorithm. Moreover, our classification accuracy was about

5% lower than desired. Due to limited image data and time
constraints, we were unable to improve this to 90%, however
with more data points and more time to evaluate the
boundaries between classifications, we could increase our
accuracy to 90%.

 Additionally, Reef Rover is non invasive to the ocean
environment and does not require training divers or potentially
putting humans at risk due to the nature of underwater work.
Through image recombination and classification, scientists
will be able to extract consistent data using the same metrics
across different areas, something that is key to this area of
research. They will also be able to track changes in the area
over time more easily. Overall, Reef Rover provides scientists
with a conveniently sized and durable opportunity to monitor
coral reefs without expending the resources needed to send
human divers, making research more accessible.

 Some things that we learned going through the design
process was that it is important to get the end to end product
working as fast as possible, while making sure subsystems
worked well. We ran into difficulties with integrating our
stepper motor into the Arduino cloud and moving all our
components onto one Arduino board. We should have
accounted for more integration time and left more time to
assemble the boat and test in the water. The waterproofing was
a continued challenge, and testing multiple ways of
waterproofing early would have made testing in the water
more successful.

 There is a lot of future work to be done to scale this project
up to a full ocean environment. For example, we would design
and manufacture a more durable and waterproof boat body.
Additionally, we could add sensors to the underwater camera
to detect how far away from a coral it is and prevent the user
from getting too close. Lastly, we could make Reef Rover
more autonomous, like others on the market, so that it could
survey an area defined by scientists on its own without human
control. Overall, Reef Rover gives scientists a powerful tool
for coral reef monitoring, but there is more to be done for the
future ocean use.

GLOSSARY OF ACRONYMS
GPIO – General-Purpose Input/Output
KNN – K-Nearest Neighbors
ML – Machine Learning
RPi – Raspberry Pi
Pi - Raspberry Pi
Cloud - Arduino Cloud
ROV - Remotely Operated Vehicle
AUV - Autonomous Underwater Vehicle
HUV - Hybrid Underwater Vehicle

14
18-500 Final Project Report: C6 - April 29, 2025

UAV - Underwater Vehicle
PPI - Pixels Per Inch

REFERENCES
[1] Jennifer A. Cardenas, Zahra Samadikhoshkho, Ateeq Ur Rehman,
Alexander U. Valle-Pérez, Elena Herrera-Ponce de León, Charlotte A.E.
Hauser, Eric M. Feron, Rafiq Ahmad, A systematic review of robotic efficacy
in coral reef monitoring techniques, Marine Pollution Bulletin, Volume 202,
2024, 116273, ISSN 0025-326X,
https://doi.org/10.1016/j.marpolbul.2024.116273.
(https://www.sciencedirect.com/science/article/pii/S0025326X24002509)

[2] Collvy. (2022, August 7). Controlling DC Motor with Raspberry Pi and
L298N motor driver. YouTube.
https://www.youtube.com/watch?v=OV0S_3KMj2A

[3] Camera software - Raspberry Pi Documentation. (2025). Raspberrypi.com.
https://www.raspberrypi.com/documentation/computers/camera_software.html
#libcamera-vid

[4] Electronic Wizard. (2024, August 14). How to Build a Remote-Controlled
Boat from Scratch: DIY RC Boat Project. YouTube.
https://www.youtube.com/watch?v=SYsk6XNfR4o

‌[5] Lazy Tech. (2023, July 20). How to Setup a Raspberry Pi and Access it
Remotely! (Headless setup). YouTube.
https://www.youtube.com/watch?v=m6aS9YF-0xo

[6] US Department of Commerce, N. O. and A. A. (n.d.). NOAA CoRIS -
Regional Portal - Puerto Rico. Www.coris.noaa.gov.
https://www.coris.noaa.gov/monitoring/biological.html

[7] Manderson, T., Li, J., Dudek, N., Meger, D., & Dudek, G. (2016). Robotic
Coral Reef Health Assessment Using Automated Image Analysis. Journal of
Field Robotics, 34(1), 170–187. https://doi.org/10.1002/rob.21698

[8] Ataa, M. S., & Sanad, E. E. (2025, April 23). A fast secure and more
reliable underwater communication system based on Light Fidelity
Technology. Nature News.
https://www.nature.com/articles/s41598-025-96484-8

[9] Image quality factors (key performance indicators). Imatest. (n.d.).
https://www.imatest.com/docs/iqfactors/

[10] Brajcich, K. (2025, April 21). How coral reefs support local
communities. Sustainable Travel International.
https://sustainabletravel.org/coral-reefs-local-communities/#:~:text=Physical
%20Protection,face%20of%20increasing%20climate%20change.&text=In%2
0addition%20to%20protecting%20buildings,of%20coral%20reefs%20every%
20year

[11] Raijin. “Healthy and Bleached Corals Image Classification.” Kaggle,
https://www.kaggle.com/datasets/vencerlanz09/healthy-and-bleached-corals-i
mage-classification.

https://doi.org/10.1002/rob.21698

15
18-500 Final Project Report: C6 - April 29, 2025

TABLE I. BILL OF MATERIALS

16
18-500 Final Project Report: C6 - April 29, 2025

TABLE II. REVISED GANTT CHART

	I.​INTRODUCTION
	II.​USE-CASE REQUIREMENTS
	III.​ARCHITECTURE AND/OR PRINCIPLE OF OPERATION
	A. Above Water Component
	B. Laptop Control
	C. Physical Prototype

	IV.​DESIGN REQUIREMENTS
	V.​DESIGN TRADE STUDIES
	VI.​SYSTEM IMPLEMENTATION
	A. Raspberry Pi Live Stream Interface
	
	B. Arduino and Arduino Cloud
	C. Machine Learning

	VII.​TEST, VERIFICATION AND VALIDATION
	A. Machine Learning Model Accuracy
	B. Live Stream Latency Design Requirement Results
	C. Image Stitching Latency
	D. Deployment Depth Result
	E. Operable Distance
	F. Image Resolution

	VIII.​PROJECT MANAGEMENT
	A. Schedule
	
	B. Team Member Responsibilities
	C. Bill of Materials and Budget
	D. TechSpark Usage
	E. Risk Management (used to be Risk Mitigation Plans in Design Document)

	IX.​ETHICAL ISSUES
	X.​RELATED WORK
	XI.​SUMMARY

