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Abstract — Reef Rover is a minimally invasive robotic system 
designed for detailed exploration of shallow coral reefs through 
high quality live feed and image capturing. After each mission, 
the laptop-based interface processes video stills to generate a 
high-fidelity map of the traversed areas. A machine learning 
algorithm analyzes these images to detect coral bleaching so 
researchers can identify areas at risk. By enhancing reef 
monitoring efficiency and conservation efforts, Reef Rover offers 
a powerful tool for researchers and environmentalists, 
eliminating the risks and costs of human diving while providing 
more detailed data than satellite imaging. 
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I.​ INTRODUCTION 
Coral reefs are some of the most important ecosystems on 

Earth. While only covering about 1% of ocean floor, they are 
home to over 25% of all marine life. Additionally, coral reefs 
protect shorelines from erosion, help form beaches, and 
provide homes for marine animals that provide critical 
economic and medicinal benefits. Many organisms found in 
coral reefs have been discovered to possess medicinal benefits 
needed for the development of drug compounds to treat 
cancer, arthritis, bacterial infections, and viral diseases. 

 
Climate change, pollution, and overfishing has had a  

devastating  impact on coral reefs. Over 50% of all shallow 
water coral reefs have been destroyed. When sea water 
temperature rises, algae that protect the coral from predators 
and disease are killed. The absence of this algae leaves coral 
susceptible to disease, causing them to lose their color in a 
process called bleaching. Bleaching is a key sign of a 
struggling coral reef that scientists monitor to assess reef 
health. 90% of the largest coral reef, the Great Barrier Reef, 
has been impacted by bleaching. 

 
Scientists and conservationists are working hard to preserve 

the coral reefs, monitoring these reefs to track the amount of 
damage over time. Currently, scientists are using satellite 
images or human divers to detect bleaching. Satellite images 
can only detect large-scale bleaching, and detection with 
divers is a tedious process which can cause damage to the 
coral and poses risk to the divers themselves. We have built a 
robot, Reef Rover, that can detect coral bleaching on a smaller 
scale similar to what a diver could do, but with increased data 
collection, analysis, and reduced ecosystem disturbance. The 

robot is controlled remotely with a laptop interface that gives 
the scientists the ability to scan the coral reef, take photos, and 
then recombine these images to create a map of the area. A 
machine learning algorithm also analyzes the generated map 
and identifies four tiers of coral health: Healthy, Pale, Partially 
Bleached, and Bleached. The robot is also equipped with a 
temperature sensor enabling scientists to record data tracking 
these additional risk factors. 

 

II.​ USE-CASE REQUIREMENTS 
In order to ensure practicality and ease of use of Reef 

Rover, we’ve identified a number of use-case requirements 
which are fundamental to meeting user needs: 
 
1. High-resolution Underwater Camera 
   Reef Rover must provide clear, high-resolution imaging to 
support scientists and other users in monitoring coral health. 
High-quality imaging is essential for effective device 
operation and ensures accurate processing by our image 
analysis algorithms. 
 
2. Reliable Bleaching Detection Algorithm 
   After each operation, Reef Rover will be deploying a 
machine learning algorithm to assess the health of coral and 
determine risk through color analysis of the stills taken from 
livestream video. To ensure reliable monitoring, the algorithm 
must achieve at least 90% accuracy in classifying coral health. 
A high rate of incorrect classifications would compromise the 
system’s effectiveness for long-term monitoring. 
 
3. Map Generation in Less Than 10 Seconds per Square Meter 
   Reef Rover must generate maps and complete bleaching 
assessments in less than 10 seconds per square meter of 
surveyed area. While this performance metric is significant for 
large-scale applications, processing occurs in the background 
post-mission, requiring no user intervention and having no 
impact on real-time usability. 
 
4. WiFi Connection to User’s Laptop 
   To ensure ease of operation and local data storage, the 
device’s control interface will run on the user’s laptop, rather 
than a designated controller, communicating with the robot via 
a WiFi connection. 
 
5. Boat Surveying Speed of 3 Inches per Second 
   The National Coral Reef Monitoring Program (NCRMP) 
defines a standard survey site as 60 square meters (~645 
square feet). An in-depth survey of a standard site takes a 
human diver approximately 1.5-2 hours to complete. With a 
surveying speed of 3 inches per second, our device will be 
able to complete a detailed survey of the same area in 
approximately 1.43 hours. 
 
6. Power Supply Life of at Least 2 Hours 
   At an average traversal speed of 3” per second, Reef Rover 
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must be able to operate for a minimum of 2 hours per charge. 
This ensures the device can complete a full standard survey 
without requiring a battery swap or recharge mid-mission. 
 

III.​ ARCHITECTURE AND/OR PRINCIPLE OF OPERATION 
   Reef Rover’s architecture consists of a physical prototype, 
electrical hardware, and software. There are three main 
subsections - the above water component, submersible, and 
laptop interface.  
 

A. Above Water Component 
   The above water component features two embedded devices: 
an Arduino Uno R4 WiFi and a Raspberry Pi 4. We added the 
Arduino Uno after the design report to provide more energy 
efficiency and to take advantage of Arduino Cloud, a 
pre-configured platform that enables remote interaction over 
Wifi. The Arduino controls two rear-mounted propeller motors 
for horizontal movement and a stepper motor that adjusts the 
depth of the submersible. It also reads temperature data from a 
water sensor. 
 
   The Raspberry Pi is dedicated to handling image capture via 
the Pi Camera Module 3 and transmitting frames to the laptop. 
Both devices communicate wirelessly with the user's laptop 
over a local WiFi network. 
 

 
 
Fig. 1.​ Electronic Hardware - Arduino Uno R4 WiFi (A), 

Temperature sensor breakout board (B), Stepper motor 
(C), Rechargeable 12V battery (D), Propellor motor driver 
(E), Raspberry Pi 4th Generation (F), Raspberry Pi 
Camera Module 3 Cable (G). 
 

B. Laptop Control 
   Onshore users interact with the system through two 
interfaces: a livestreaming window powered by the Raspberry 
Pi and a controller interface hosted on Arduino Cloud. The 
livestream provides a real-time video feed, photo capture 
capabilities, and, after operation, generates a map of the 

surveyed area. User-captured images are stored on the user's 
laptop in a pre-specified folder. The program also 
incrementally captures images automatically, which are then 
sent to our image stitching algorithm to produce the map of 
the surveyed area. Lastly, the resulting stitched image is then 
processed by the Classification module, producing a final 
high-resolution map with heat mapped identification of coral 
bleaching intensity. 
 

C. Physical Prototype 
   Numerous materials make up the physical prototype of Reef 
Rover. We made the base with two parts; a plastic bowl and 
foam board. The plastic bowl holds the electronics and spool 
system to raise and lower the camera. It also acts as a moat, 
since the walls of the bowl go above the foam board base, 
protecting the electronics from any leaks into the boat. The 
foam board extends the base to increase the size and stability 
of the boat. We sealed the foam board with waterproof caulk 
to prevent waterlogging the boat and preventing mold or 
disintegration. The sides of the boat were constructed with 
four foam board corners and plastic walls. We added a 
rectangular foam board cut out to the top of the walls to give 
the boat a more defined structure. We sealed the sides of the 
boat to the foam board base with waterproof tape and 
waterproof caulk. Pool noodles on each side and underneath 
the boat keep it afloat.  
 
   The two thrustor motors on the back are screwed in 
underneath the foam board base. We made a cut out on the 
side of the boat for the camera cable and temperature sensor. 
The location of this cut out was different from the design 
report, where we initially were going to cut a hole through the 
foam board base so the camera went straight down. We 
realised that there would be no successful way to waterproof 
this hole even if we raised the boat up high enough so that 
there was an air gap between the base and the water. 
Additionally, raising the boat high enough out of water for an 
air gap would have reduced the stability of the boat and it 
could have tipped over easily. Also, we added a paper towel to 
the cable hole to dry off water as the cable came up above the 
water into the boat, further protecting our electronics. In order 
to maintain balance, we added a counter weight on the other 
side of the boat so the boat moved in a straighter line. 
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Fig. 2.​ (Above) Physical Prototype - Foam board base (A), 

Propeller Motors (B), Foam board corner and waterproof 
tape (C), Pool noodle (D), camera cable and temperature 
sensor hole, with paper towel (E), Submersible camera 
box (F), Water temperature sensor (G). 

 
Fig. 3.​ (Below) Block diagram of the entire system, 

showcasing the different connections that were used, the 
three components, and what software was individually 
developed.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   The underwater component has the camera and temperature 
sensor that are connected to our microcontrollers via 
waterproof cable. The Arduino connects to the motors and 
temperature sensors via wire connection. The Raspberry Pi 
and Arduino connect to their respective software interfaces 
through a WiFi connection, allowing the user to control Reef 
Rover at a distance. Images are then able to be post processed 
with the map generation algorithm and machine learning 
algorithm. 
 
Engineering Principles:  

One of the engineering principles we used to create Reef 
Rover was to test subsections before integration to avoid 
complicated errors. This was especially important because in 
our final product we had to integrate into a small waterproof 
area, so debugging after everything was together would not 
have been practical. We were able to each work on our 
separate software and hardware sections and test their 
functionality before we integrated everything, especially the 
hardware. Also, we had a large focus on our materials in this 
project to ensure we had waterproofness, balance, and 
floatation. The materials we used for waterproofing include 
rubberized caulk paste, polyethylene based tape, and liquid 
latex. To ensure the boat was balanced and stayed afloat, we 
added foam board, an already buoyant material and pool 
noodles such that more were in the back where the boat was 
heaviest. We had to iterate over the design of the spool so that 
the hole where the stepper motor was inserted wouldn't wear 
down. First, we used wood, but this was replaced with laser 
cut acrylic. We spent a lot of time designing the construction 
of the boat since we had all the materials, but had to customize 
it to our needs. 
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   We also used engineering principles to design wireless 
communication. We were thinking about either bluetooth or 
WiFi for this application, but learned that bluetooth does not 
have the bandwidth to transfer images, so we decided to use 
WiFi.  
 
Scientific Principles: 
   The scientific reason we had to have the above water portion 
of Reef Rover was that water disrupts wireless data 
transmission. Radio waves which typically transfer data 
wirelessly are severely disrupted underwater because of high 
attenuation and absorption. Currently, communication across 
oceans occurs through tubes on the ocean floor called fiber 
optic cables that contain the radio waves. An emerging 
communication protocol called Li-Fi would overcome these 
obstacles posed by water, but this is out of scope for current 
industrial applications and our project [8]. 
 
Mathematical Principles: 

We used mathematical principles when evaluating a number 
of our design requirements.  

 
OpenCV offers two methods of key feature detection (SIFT 

and ORB) as well as two methods of image stitching 
(Panoramic and Scan). Our selection of which methods to use 
in our final post-processing algorithm was guided by 
mathematical evaluation of each method’s performance. A 
series of controlled trials were conducted on the four 
permutations that can be created by pairing one feature 
detection method and one stitching method. For each 
permutation, we conducted 15 trials, recording the square 
footage surveyed, time taken to stitch the image, and whether 
or not a final image was created successfully. The overall 
results are depicted in the graph below. Ultimately, we 
selected the SIFT/Panorama algorithm, which demonstrated 
the second-fasted average time per square meter while 
significantly also outperforming the fastest method in 
reliability. 

 
   When implementing our ML algorithm, we tested several k 

values, including 3, 5, and 7. We decided that with the size of 
our training data, in order to prevent overfitting, that 5 was an 
appropriate number of neighbors to maximize our accuracy. 
Additionally, the program first averages the RGB value of the 
photograph in groups of 10x10 pixels, and then classifies each 
group individually. These individual classifications are 
represented in the output image, and then each output image is 
labelled in a .txt file with their corresponding overall 
classification. 
 

We also applied mathematical reasoning and unit analysis 
when selecting a power supply. Reef Rover was designed to 
operate on a single charge for at least two hours. To meet this 
requirement, we calculated the estimated power draw of each 
electrical component, resulting in a total system power 
consumption of 29 watts. This value was converted to 
amp-hours, guiding our decision to use a 5.2Ah power supply 
– sufficient for two hours of operation with a reasonable 
margin. Exact calculations are provided in Section IV.8. 

IV.​ DESIGN REQUIREMENTS 
To meet the use-case requirements, the following design 

specifications outline the technical choices and constraints 
necessary for Reef Rover’s functionality: 

 
1. High-resolution Underwater Camera 
   To achieve high-quality imaging, the system must support 
high-resolution video capture. This will be accomplished 
using the Raspberry Pi Camera Module 3, which supports the 
industry standard of 330 PPI resolution, ensuring detailed and 
accurate image capture. 

 
2. Low Control Latency 
   To enable real-time remote operation, the system must 
maintain a communication transmission latency below 300ms. 
Reef Rover will achieve this by rapidly transmitting the 
livestream video feed from the boat to the user and relaying 
user commands back to the boat via a WiFi connection. The 
latency can be controlled by adjusting the frames per second 
(FPS) to allow for smooth live video. 

 
3. Bleaching Algorithm  
   The system must correctly identify healthy coral based on a 
predetermined range of pink and blue colors. This will be 
achieved by preprocessing the images taken by our robot to 
remove the background color of the water and then taking an 
average of the color value over a 10x10 pixel square. The 
algorithm will then identify both the color of the coral and the 
stage of health (healthy, pale, partially bleached, bleached). 
We will run a series of tests on both edited pictures with 
different color samples and images from the camera to 
measure the accuracy of the classification algorithm at the 
minimum threshold of 90%.  

 
4. Map Generation Algorithm 
 The system must generate a complete survey map 
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post-operation, processing each square meter of surveyed area 
in less than 10 seconds. Map generation will be performed 
using the OpenCV library, leveraging the SIFT algorithm to 
detect keypoints within the images. These key points will be 
used in OpenCV’s panorama stitching mode to align and 
merge images into a seamless map well within this time 
constraint. 

 
5. Underwater Unit Size 
   To minimize risk of damage to the coral reef and reduce 
ecological disturbance, Reef Rover’s underwater sensor unit 
must not exceed dimensions of 6” x 4” x 4”. 

 
6. Deployment Depth 
   Coral reefs are primarily found near the surface of the ocean, 
meaning that the underwater component of Reef Rover does 
not need to deploy to significant depths. For the purposes of 
this project, we have set a maximum depth of 2 feet. This 
depth is sufficient for testing and development, while allowing 
flexibility for future scaling in real-world deployment. 
Increasing this depth would add cost without introducing any 
new technical challenges. 

 
7. Operable WiFi distance 
   For testing purposes, Reef Rover must maintain a reliable 
WiFi connection at distances up to 10 feet. While this distance 
can be easily increased for real-world deployment, doing so 
would introduce additional costs without adding significant 
technical complexity or functionality. For this reason, we’ve 
chosen to allocate our budget to other, more impactful aspects 
of the project. 

 
8. Power Supply Capacity 
   To support a continuous 2-hour survey without recharging, 
our power supply must have a minimum capacity of 5Ah. This 
requirement is based on the following power consumption 
estimates per electrical component: 

 
Raspberry Pi: 5W 
Arduino Uno R4: 0.8W 
Servo Motors: 5W per motor = total 10W 
Stepper Motor: 12W 
Camera: 1.5W 
Temperature and pH sensor: 0.5W 
 

   With an estimated total power consumption of 29W over 2 
hours, the required battery capacity is calculated as: 

 (29. 8 𝑊 ×  2 ℎ𝑜𝑢𝑟𝑠) / 12 𝑉 = 4. 97 𝐴ℎ
 

   To provide a margin of error, we’ve purchased a 5.2Ah 
rechargeable power supply. 

 

V.​ DESIGN TRADE STUDIES 
1. Processing Unit 
  The first processor considered was by Nordic Semiconductor, 

and it was a device that could transmit video over bluetooth 
and WiFi together. At this point, we were still debating 
between bluetooth and WiFi. However, it did not have good 
input and output pin connections for the motors. The next 
processor we looked at was the Raspberry Pi. It had WiFi 
capabilities and a simple connection to cameras and motors. 
We were debating next whether we wanted to use the 
Raspberry Pi 4 or 5. The fifth generation RPi had faster 
processing speeds with a newer CPU and GPU, but we had 
immediate access to a RPi 4 in the ECE inventory, so we 
wanted to use that one first to see if it worked for our use case.  
 
   Ultimately, the RPi 4 met our needs for live streaming, 
however, was having issues being able to control our motors. 
The live stream was operating with a high frame rate, which 
made it hard to send requests to control the motors at the same 
time. We tried to implement threading to control the motors 
and live stream separately, but we were unsuccessful. We 
opted to add an Arduino Uno R4 with WiFi to handle the 
motors and temperature sensor. The Arduino also is more 
energy efficient at controlling the GPIO pins, and we had 
access to a predefined wireless communication service called 
Arduino Cloud. We could easily set up motor control with this 
interface. This meant that users now interacted with two 
interfaces, however by putting the computer in split screen, we 
could easily operate both interfaces at the same time. 
 
2. Communication Method 
   We were deciding between using Bluetooth or WiFi for our 
communication method. Ultimately, bluetooth was not going 
to have the bandwidth necessary to transmit video or photos, 
so we are using WiFi. WiFi also has longer range connection, 
and scientists already have WiFi on their research boats to 
communicate with people on land and run data analysis 
software. The WiFi they use is unique because instead of 
connecting to a cell tower it connects to a satellite.  

 
3. Power Source 
   To determine the appropriate power supply, we first 
estimated the total power draw of our system and the required 
runtime per mission. Our system consumes approximately 
29W in operation. Based on Reef Rover’s estimated speed of 3 
inches per second, we calculated that it would approximately 
1.43 hours to traverse a standard survey site. Based on these 
metrics, we need a 12V supply with a capacity of 4.97 Ah. 
 
   We selected a 12V power supply with a 5.2Ah capacity, 
capable of delivering 29W continuously for 2 hours. While we 
considered larger power supplies, our chosen capacity 
minimizes cost and supports a full survey being conducted on 
a single charge. 

 
4. Stepper Motor  
   To control the z-direction movement of the underwater 
system, we need a motor capable of precise, low-speed 
movement to deploy and retract the unit; a stepper motor is 



6 
18-500 Final Project Report: C6 - April 29, 2025 
 
ideal for this application. We selected a NEMA 17 stepper 
motor, based on its 59 Ncm holding torque, which exceeds our 
needs, calculated below: 

 
   Given that the underwater component has a maximum 
weight of 2 lb, the force required for deployment and 
retraction is: 

 2 𝑙𝑏𝑠 × 9. 81 𝑚/𝑠2 = 0. 907 𝑘𝑔 × 9. 81 𝑚/𝑠2

     = 8. 899 𝑁
 

   Assuming a 2-inch spool radius, the minimum holding 
torque needed is: 

 8. 899 𝑁 × 2 𝑖𝑛 = 8. 899 𝑁 × 0. 0508 𝑚
                             =  45. 21 𝑁𝑐𝑚

 
5. Stepper Motor Driver 
   We need a driver to control the motor. Three of the most 
common drivers for a NEMA 17 stepper motor are the A4988, 
DRV8825, and TMC2209. In choosing a motor driver, we 
prioritized cost and precision, while also considering ease of 
use and noise levels. Ultimately, we chose to use the 
DRV8825. While this driver is more expensive than the 
A4988, it offers quieter and more precise operation, allowing 
1/32 microstepping, compared to the A4988 1/16. The 
TMC2209, on the other hand, offers 1/256 microstepping 
which is significantly more precise but exceeds our necessary 
level of accuracy. Additionally, the TMC2209’s higher cost 
and more complicated setup made it less practical than the 
DRV8825. 

 
   Lastly, the precision afforded by the DRV8825 driver means 
that we no longer need to include an incremental encoder to 
the stepper motor. We originally planned on incorporating an 
encoder to ensure high levels of precision, however, our 
chosen motor and driver should allow for very little ( < 10mm) 
positional error to be accumulated over two hours of 
operation.  
 
6. Propellor Motor  
   In our design review, we discussed servo motors that were 
purchased to control the forward motion of the boat. However, 
these turned out to not be waterproof as advertised, so we 
went back to the drawing board to look for a new motor. We 
did not want to replace the motor driver, so we had to find a 
waterproof thruster motor that was brushless. After some 
research, we settled on a remote controlled boat thruster, that 
is energy efficient, can be powered with 12V, and does not 
have too much power so we can keep the speed of the boat at 
the desired 3 inches/second. Another option we had would 
have been suitable except it operated at 200 horsepower, too 
much for our application. 

 
 

7. Propellor Motor Driver 
   The L298N was chosen because it can protect the Raspberry 

Pi from directionality fluctuations from the servo motor. Also, 
the L298N amplifies the small current from the GPIO pins on 
the RPi to be large enough to operate the servo motor. The 
L298N can run two servo motors at once, which is perfect for 
us because we will be using two servo motors. It comes with 
an enable pin in addition to the regular input to provide 
additional control. It can be configured to change the direction 
of rotation of the servo motor, which we can use to put the 
boat in “reverse gear” to go backwards if needed. We did not 
initially plan to implement backwards motion, but this 
component gives us the ability to if we end up needing it. The 
L298N can take in smaller amounts of power from the RPi to 
control the speed of the motor, which will allow us to adjust 
the speed of the boat or modify our turning mechanism if 
needed by having both motors running but one at a lower 
speed than the other. 
 
8. Temperature Sensor​  
   In order to measure the temperature of the water, we ordered 
the GAOHOU DS18B20 Waterproof Digital Temperature 
Sensor with Adapter Module. We chose this model because it 
is waterproof and the length of the cable would allow us to 
raise and lower the sensor with the camera unit. While we 
initially planned and ordered a sensor that would measure both 
pH and temperature, we could not accurately calibrate the unit 
and limited waterproof options for replacements resulted in 
the decision to prioritize one of these values. As temperature is 
more indicative of coral bleaching, we decided to go with this 
option. 
 
9. Machine Learning Algorithm 
   As we discussed in our design review for the machine 
learning algorithm, we used the K-nearest neighbors 
classification algorithm in order to take advantage of 
supervised learning techniques. As our ‘heat mapped’ output 
image produces a ‘clustered’ color result, we found that this 
was a reliable way to process and represent data. The 
algorithm works by breaking the image up into smaller groups 
and then classifying each sub group. 
 
10. Map Recombination Library 
   After completing initial research into existing libraries – 
primarily focusing on Python libraries, as this is the language 
that a majority of our codebase will be written in – we 
identified two promising options, each having distinct 
advantages and trade-offs. 

 
   The first library that we considered was COLMAP, which 
provides advanced capabilities beyond image stitching such as 
Structure-from-Motion (SfM), Multi-View Stereo (MVS), and 
3D map generation from images.  While these features offer 
interesting possibilities and additional insights for researchers, 
they require significantly more computational power. 
Achieving our target processing time of 10 seconds per square 
meter would be difficult using COLMAP’s image stitching 
capabilities alone, and would likely be infeasible if we 
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implemented any of the additional features it supports. 

 
   The other library that we evaluated was OpenCV. While this 
library doesn’t offer many of the advanced features that 
COLMAP does, it does support efficient image recombination. 
OpenCV's image stitching is designed for panoramic images, 
or images which connect in only one direction, meaning that 
we will need to develop an algorithm which adds support for 
image stitching both horizontally and vertically. However, 
even with this added implementation effort, OpenCV offers a 
clear computational advantage. 

 
   After considering both libraries, we decided to use OpenCV 
in our final implementation. Although COLMAP offers many 
features that could be valuable additions in the future, they 
exceed the needs of a standard coral reef survey. Since the 
NCRMP typically conducts 2D analysis, OpenCV aligns best 
with our project’s objectives while also meeting our strict 
computational constraints. 
 

VI.​ SYSTEM IMPLEMENTATION 
   As mentioned in the system architecture section, we had 
three main subsystems in our design - the above water boat, 
the laptop interface, and the underwater component. We will 
go into detail about the implementation of each part of our 
design. 

A. Raspberry Pi Live Stream Interface 
The first microcontroller on our above water subsystem is 

the Raspberry Pi 4th Generation, which controlled image 
capture and transfer. We used the Raspberry Pi Camera 
Module 3 that connected to the onboard camera port to take 
the images. This camera has a 12 megapixel lens with 
autofocus, and is marketed as Raspberry Pi's highest quality 
camera. In order to reach our depth requirement, we ordered 
special camera cables that were 1 meter long. The cable was 
waterproofed with waterproof tape and then sealed with two 
layers of liquid latex.  

 
The Raspberry Pi was configured on the SD card to connect 

to an iPhone hotspot network to wirelessly transfer images to 
the computer. We were able to SSH into the RPi and write a 
code script that ran on the Pi which turned on the camera, 
responded to requests sent from the computer, and sent still 
images to the computer that were captured on the camera. We 
used a socket server that was made with the Python library 
socket. The host computer script would send a request to the 
Pi to capture an image. Then, the script in the Pi would receive 
the command, use the library Picamera 2 to take the photo, 
and then send the bytes back to the host computer. 
 
   The current workflow is described below. 

 
Fig. 4.​ Users flow through the Pi interface. Improvements can be made in 

the future to eliminate the SSH step and automatically run the script on 
the Pi. 

 
   We ran into issues with the color of the images coming into 
the computer, since the Pi was using a different pixel color 
representation. We were able to remedy this by using a built-in 
function to switch the pixel color representation before it was 
displayed and saved on the computer. Additionally, we found 
that the images were darker and more blurry than desired. To 
remedy this, we configured the camera settings on the python 
code in the Pi to increase the brightness and focus more on 
objects about 12 inches away from the camera, where we 
would expect coral to be most of the time. 

 

B. Arduino and Arduino Cloud 
   The addition of the Arduino Uno R4 WiFi was made after 
the design review, due to complications with motor commands 
interfering with the live stream commands. We wanted the 
boat to be controlled without interrupting the live stream, and 
to accomplish this we added an Arduino. We took advantage 
of the Arduino Cloud, a predefined wireless control system, to 
control the I/O pins on the Arduino Uno R4. 
 
   When we first added the Arduino, we tried using the 
Arduino Nano ESP32, which is a smaller Arduino with WiFi 
capabilities. However, we ran into many bugs using this. First, 
one of the Arduino Nano’s ports broke after only a few uses. 
Then, once we replaced the broken Nano, we tried to add our 
stepper motor, however with the same code and same wiring 
compared to using an Arduino Uno, the Nano ESP32 was not 
able to power the stepper motor correctly. We spent a lot of 
time trying to debug this particular section of integration, and 
ended up having to scrap the Nano entirely. We then ordered 
the Arduino Uno R4 with WiFi, since the Arduino Uno we had 
did not have WiFi capabilities.  
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Once we had all of the hardware wired to the Arduino Uno R4 
with WiFi, we had to integrate the stepper motor with Arduino 
Cloud. We had to adjust the code so that the stepper motor 
activated based on a defined variable that changed when the 
user pressed a button widget on the dashboard. We spent a lot 
of time debugging this as well because the delay time we used 
was critical, and we were sending commands to the Arduino 
too quickly and the stepper motor was not making a full 
rotation. Once we added a longer delay between the 
commands to make a step, we were able to control the stepper 
motor with the Arduino Cloud. 
 
   We also added a temperature sensor to the Arduino so that 
the user could see the temperature in real time and correlate 
the water temperature with coral health. The temperature 
sensor was mounted onto a breadboard with a power source, 
ground, and data line. We connected the dataline to digital pin 
4 on the Arduino and we read the temperature once every 
second. We used a code function from the sensor developers to 
calculate the temperature from the data received, and 
displayed this information on the Cloud dashboard. We also 
included a graph that displayed the temperature over time. 
 
   The propellers were also controlled by the Arduino Cloud. 
We created two variables on the cloud that controlled the 
boat's forward movement and turns. The first variable 
controlled straight forward movement. This was a scale bar 
with values of 0 to 3. When the user set this to be 0, the 
propellers would stop moving. The values 1 to 3 corresponded 
with different movement speeds (1 being the slowest and 3 
being the fastest). On the back end, this one variable would 
control both propellers. When the user changed this variable, 
the Arduino would send a PWM signal (using the analogWrite 
command) to both motors. The value of this signal was 
determined by extensive pool testing to see which values made 
the boat move as straight as possible. Since the camera was 
coming down on the right side of the boat, the right motor 
propelled faster to combat the weight and resistance on the 
right side of the boat. Despite our PWM signal tuning efforts, 
we could not overcome the weight of the camera with motor 
speed alone, so we added a counter weight on the left side to 
improve our control. This component was made identically to 
the waterproof camera box that we constructed, substituting 
the internal camera component for weights. This ensured the 
counter weight was nearly identical to the component it was 
balancing against. 
 
   We had one more variable, which was called “make turn,” 
which turned on the right motor only, turning the boat around 
so the user could start surveying in the other direction. 
 
   The Arduino Cloud had unexpected drawbacks, including a 
limit of 5 variables per device on the free plan. In order to add 
more variables, we had to purchase a subscription. This 
limited our control of the motors. At first, we had two scale 
bars that controlled the right and left motor respectively, but 
this was not intuitive for users and it was impossible to turn 
the motors on at the same time, which made the boat never go 
in a straight line. Future work could be done to improve the 

control of the boat by integrating a remote control with more 
precise motor movement. 
 

 
Fig. 5.​ The Arduino Cloud interface. The make turn variable (A), the 

forward motion scale bar (B), the up direction camera button (C), the 
downward camera button (D),  the numerical temperature in fahrenheit 
(E), and the temperature over time (F).  

 
   The user will use these two interfaces, the live stream from 
the Raspberry Pi and Arduino Cloud at once to control Reef 
Rover. Below is an example of the two interfaces on a laptop 
in split screen. The split screen made the configuration of the 
widgets different from when it was full screen, which was 
another drawback to the Arduino Cloud interface that we tried 
to overcome but were limited by their software. 
 

 
Fig. 6.​ The live stream image (left) with the Cloud interface (right) 
 

C. Machine Learning 
   For the machine learning section, we used a K-Nearest 
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Neighbors algorithm in order to utilize supervised learning 
techniques. The program was designed to create an overall 
‘heat map’ representation of coral bleaching by running on the 
output of the combined images, or to run on the entire folder 
of images collected from the livestream to help scientists 
pinpoint different areas of bleaching.  
   As part of the image processing, the program also removes 
the image background to prevent darker ocean colors from 
skewing the results. It works by first sectioning each input into 
10x10 pixel groups, which was chosen in order to both retain 
the integrity of the initial image while maintaining a 
reasonable run time on potentially very large batches of 
images. The average RGB value of each section is then taken 
and used to classify that section.  
   Our program was designed to be most accurate on two types 
of coral, pink or blue. Once each section passes through the 
first KNN classifier, where it is assigned one of these labels, it 
then goes through a second layer fine tuned for either pink or 
blue coral where it is labeled as either healthy, partially 
bleached, pale, or bleached.  
   By splitting the images into smaller sections, we are still 
able to achieve the benefits of a clustering algorithm such as 
identifying healthy and unhealthy subsections of coral. We 
also utilized several libraries in this process, namely 
Scikit-learn for machine learning, numpy, PIL and Rembg for 
image processing, and os, io, and collections for data 
management from the user's computer.  
 
D. Map generation 
   Our map generation algorithm takes in a folder of images 
automatically captured by the livestreaming interface during a 
survey and generates a high-resolution composite map of the 
surveyed area. This subsystem is implemented entirely in 
software and leverages multiple OpenCV functionalities. It 
supports variations in image overlap—caused by inconsistent 
survey speed—as well as changes in lighting and perspective. 
 
   The algorithm centers on the OpenCV cv2.Stitcher_create() 
interface, which supports stitching using either Panorama or 
Scans mode. Before stitching, each image is analyzed to detect 
key features using either the SIFT (Scale-Invariant Feature 
Transform) or ORB (Oriented FAST and Rotated BRIEF) 
methods. 
 
   Based on the analysis detailed in Section III, Mathematical 
Principles, we selected the SIFT method for feature detection 
and the Panorama mode for stitching. Panorama mode stitches 
images in a single linear direction, ideal for constructing wide, 
continuous image sequences. To accommodate this, our 
program first compares keypoint matches to organize the 
images into rows that represent individual survey passes. 
These rows are stitched horizontally using Panorama mode 
and then vertically combined to produce the final stitched 
map. 
 
 
 

   Through iterative testing, we identified two key 
optimizations. First, adjacent images often contained more 
overlap than necessary, allowing us to skip redundant frames. 
We introduced an image_step parameter to stitch only every 
nth image within a row, significantly improving performance 
without sacrificing accuracy. 
 
   Second, we observed that while Panorama mode was more 
reliable overall, it occasionally failed on certain image 
batches. Interestingly, these failures were often resolved by 
switching to Scans mode, which, while generally less 
successful, handled some edge cases better. To implement this, 
we added a try/except block that defaults to Panorama mode 
and falls back to Scans mode upon failure. 

   To minimize reliance on the less consistent Scans mode, we 
introduced a “batch stitching” method: each row of images is 
split into smaller batches (based on a batch_size 
parameter), which are stitched individually. This limits the 
number of images per stitch attempt, improving the chance of 
success and allowing recovery from partial failures. The final 
map is built by recursively stitching the resulting batch 
outputs. 

   The overall pipeline of this algorithm is as follows: 
1.​ Accept command-line parameters to override default 

values (i.e. image_step and batch_size); --help 
provides usage guidance 

2.​ Prompt the user to enter a valid image folder path 
3.​ Load every nth image from the folder (where n = 

image_step), resizing them to a consistent width 
4.​ Apply SIFT feature detection 
5.​ Organize images into rows based on keypoint overlap 
6.​ Divide each row into smaller batches of size 

batch_size 
7.​ Attempt to stitch each batch using Panorama mode; if 

it fails, fall back to Scans mode 
8.​ Recursively stitch all batch outputs to produce a 

single final image 
 
 
E. Spool design 
   To allow for the user to adjust the depth of the underwater 
camera during operation, we implemented a custom spool 
system controlled by a stepper motor. This subsystem raises 
and lowers the camera via (un)winding the camera cable. 
    
   The spool was fabricated from laser cut acrylic and designed 
to maintain consistent tension on the camera cable. This 
allowed for deterministic depth based on spool position, and 
prevented damage to the cable. A stepper motor, controlled by 
the Arduino Uno, drives the rotation of the spool. This motor 
was chosen for its ability to precisely control rotational 
movement, allowing for fine-tuned adjustment of the camera’s 
depth based on survey needs. 
    
   One key design  challenge that we encountered during 
designing this subsystem was that, due to the length and 
rigidity of the RPi camera module’s cable, the cable cannot 
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twist freely during spool rotation without risking damage or 
disconnection from the RPi. To resolve this problem, we 
mounted the RPi directly to the side of the spool such that the 
RPi spun with the spool. This ensured that the anchored end of 
the camera cable rotated in sync with the spool itself, avoiding 
torsion and maintaining a reliable data connection. 
 

 

VII.​ TEST, VERIFICATION AND VALIDATION 
   To test our implementation and verify that it satisfied the use 
case requirements, once we built Reef Rover we tested in the 
Cohon University Center pool. We used dive toys to act as our 
coral, since they are often vibrant colors. We tested the 
latency, operable distance, and deployment depth. We tested 
other design requirements out of the pool, including the live 
stream and map generation latency, the classification accuracy, 
and image resolution. Due to time constraints, we were not 
able to test the battery life at once, however we were operating 
the boat for a total of 4.5 hours of pool testing before the 
demonstration, and then another hour of demonstration before 
our battery died, which was more than enough to accomplish 
our theoretical scan of about 2 hours. 
 

A. Machine Learning Model Accuracy 
   In order to test the performance of our Machine Learning 
model, we used a database of over 900 pre classified images 
of coral reefs. To develop the training data, which used RGB 
data points, we manually sorted through images of pink and 
blue hued coral and used a color picker to sample data points. 
Once these points were collected, we validated the 
performance of our model on 100 of the pre classified images, 
split evenly between healthy and unhealthy coral. These 
images were processed in ten tests using ten images each, and 
the overall classification of each image was written to a .txt 
file at the end of each test. As we were using four categories ( 
healthy, partially bleached, pale, and bleached) and our sample 
dataset only had two categories (healthy and bleached), we 
considered results of healthy and pale to be healthy and results 
of partially bleached and bleached to be bleached for 
validation purposes.  
 
   We also ran the program on images we took during our in 
water training of Reef Rover. Here, we were limited based on 
the colors available to us in the objects we were using in the 
pool, as these were all fairly vibrant colors, most of our items 
were classified as healthy, however we were able to place 
more lightly colored objects which were classified in one of 
the bleached groups. Overall, we were able to reach an 84% 
success rate for our algorithm, which falls slightly below our 
goal of 90%. While we were under this testing threshold, 
issues such as differences of coral depth affected the lighting 
on the coral pictures, making it hard to find a standardized 
way to evaluate each image. Reef Rover was designed to 
operate in shallow water, where the coral will remain more 
‘true to color’ underwater. With more time, we also could 

have tested a variety of more complicated models which may 
have resulted in an improved performance.  

 

B. Live Stream Latency Design Requirement Results 
Our design goal was for our live stream latency to be less 

than 300 ms. This would give users real time feedback on 
where Reef Rover was, making surveying easier and avoiding 
crashes into coral. We used the time library in Python to 
measure how long it took for the program to send a request to 
the camera until all the image bytes were received by the 
computer. We took the average latency for 25 frames and 
found this value to be 70 ms, much below our maximum 
requirement. 

 
While we were testing in the pool, we found that the latency 

was fast enough to see where the boat was in the water. We 
found it challenging however to understand which direction 
the boat was pointing in by just the image of the bottom of the 
pool. To improve the users understanding of where Reef Rover 
was, we could add another camera to the front of the boat. 
 

C. Image Stitching Latency 
One of our design requirements was to reduce the post 

processing time by our map generation algorithm running with 
a latency of no more than 10 seconds per square meter 
surveyed. This was defined as the total stitching process time 
divided by the area surveyed. 

 
This was tested by using the Python time library to record 

the duration of the stitching process for each image set or 
survey. This duration was then divided by the known 
approximate area of the survey (in square meters), which was 
measured during test surveying sessions. Multiple trials were 
conducted across different surveys, with several repetitions per 
image set to account for variability in processing time due to 
hardware performance and image content. 

 
The results of these trials were averaged to compute a 

representative stitching latency. We observed some variation 
between trials depending on lighting conditions and image 
complexity, but the final average latency across all trials was 
7.83 seconds per square meter.  

 
Normally, images that scientists take must be individually 

inspected. Now, we are able to combine hundreds of images 
together for comprehensive review. This metric meets our 
design requirements, and confirms that our selected OpenCV 
methods provided the intended balance between accuracy and 
efficiency, suitable for the target use case of Reef Rover.  

 

D. Deployment Depth Result 
Our design requirement was to be able to deploy our camera 

at least 2 feet below the water. We tested this by fully 
deploying the camera and measuring the depth it can reach. 
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We had a depth of 25 inches, which allowed us to meet this 
design requirement. 

 
We noticed in the water that the camera would sometimes 

float upwards in the water, but it never went farther than the 
cable would allow. This prevents the camera from accidentally 
knocking into things below it, but it could be higher than the 
user anticipates. This control is limited due to the fact that we 
needed to pull the camera up and down and the camera cable 
is very flexible. 

 

E. Operable Distance 
Our design requirement was to be able to operate the boat 

from at least 10 feet away, simulating how a researcher would 
be far from Reef Rover during surveying. To test this, we 
turned on all of our systems and connected them to our WiFi 
network, moving the source of the WiFi and the computer 
away from the boat. We then turned on the live stream and the 
motors, and began to operate as usual. We moved as far away 
as we could in the room we were in (27 feet) and the controls 
were working just as if we were next to Reef Rover. 

 
This satisfies our use case that users need to be able to 

operate the boat from a long distance away. In the ocean, 
Researchers often cannot drive right alongside the robot, so 
this is an indicator that this could be scaled up well to even 
farther distances. 

 

F. Image Resolution 
Our design requirement for  image resolution was 300 

pixels per inch (PPI), which is a metric used to define an 
image as “high resolution.” To test this, we would inspect a 
saved image from the underwater camera and see what the PPI 
was. When we inspected our images, no matter how clear the 
image was, the PPI was 72. We compared this to a saved 
image taken on a GoPro, and these crisp images still had a PPI 
of 72. We realized that this was not a useful metric in 
determining whether an image was “high resolution.” 
Moreover, if we had images that were 300 PPI, this would 
slow down our map generation and machine learning 
algorithms significantly, likely making us unable to meet these 
requirements. A better metric for camera quality in our use 
case would be color accuracy, which images can be compared 
to predefined charts to ensure the colors are accurate. This 
would ensure that coral color is being accurately recorded. 
Another important camera quality would be image sharpness, 
which would allow the user to be able to see detail within the 
image enough to identify predators on the coral or other coral 
disease besides bleaching [9]. We were limited in our camera 
options because we had to be able to connect the camera to an 
Arduino or Raspberry Pi, because we cannot transfer images 
wirelessly directly from an underwater camera.  

 
 

VIII.​ PROJECT MANAGEMENT 

A. Schedule 
Approximately halfway through our implementation period, 

we created an updated Gantt chart, which is attached in the as 
Table II. While we initially followed the timeline outlined in 
our design report, several delays affected our overall project – 
most notably waterproofing.  

 
The propeller motors that we originally purchased were 

marketed as waterproof however, immediately upon delivery 
we realized that they were not waterproof and would not meet 
our needs. The ordering and delivery of a suitable replacement 
immediately put us about 2.5 weeks behind schedule. Despite 
this setback, as well as multiple following, though smaller, 
setbacks that resulted from water damage to our underwater 
camera, we ultimately recovered enough time to complete all 
core functionality by the final project demo and poster session. 

 

B. Team Member Responsibilities 
Abigael was primarily responsible for the machine learning 

algorithm for classifying coral health, including both 
developing and validating the model. Additionally, Abigael 
worked on the integration of the temperature sensor, 
construction of waterproof camera cables, and was our go-to 
in the pool team member during testing sessions. Abigael took 
the lead on waterproofing our entire boat system, ensuring that 
no water leaked or splashed into the main, above-water 
section, damaging any electronics. Abigael took the lead on 
our final video as well. 

 
Emma was responsible for the construction of the boat boat, 

as well as the processor as a whole. Processor responsibilities 
include the setup and testing of all motors, WiFi connection, 
and live stream video set up. This involved a last minute pivot 
from using an RPi to Arduino for motor control, which Emma 
researched and set-up a new interface via Arduino Cloud.  She 
also created the user interface and backend connection to 
allow remote control of the hardware systems. Emma took the 
lead on the final report as well. 

 
Maddie was responsible for the map generation algorithm 

portion of post-processing, which was modified throughout 
the implementation process to no longer require the capture of 
still images from the livestream feed, as the feed automatically 
saved as images rather than video. Additionally, Maddie 
designed and constructed the mounting system for all of the 
on-boat hardware, including the spool system. Additionally, 
Maddie was our team’s soldering expert, transferring all 
electronics from protoboards to perfboards. Maddie took the 
lead on the final poster as well. 

 
Fig. 7.​ Schedule example with milestones and team responsibilities 
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C. Bill of Materials and Budget 
As our project developed, we went through several design 
iterations and pivots, mostly related to the need to waterproof 
our product. We used almost every item purchased, with the 
exception of the first set of motors we ordered which were not 
waterproof as marketed, and a cover for our underwater 
camera which was also not waterproof. Additionally, our first 
temperature and pH sensor ended up not working. Most of our 
unexpected costs came from different waterproofing methods. 
Please refer to Table I for a more detailed description of the 
bill of materials and the budget.  
 

D. TechSpark Usage  
Our team used Techspark, as well as IDeATe, as a resource 

for laser cutting acrylic components including the underwater 
camera box and the spool/hardware mounting. We also 
borrowed tools from TechSpark such as tape measures, hot 
glue guns, scrap metal, tape, and much more. No construction 
or testing took place in Techspark. 

 

E. Risk Management (used to be Risk Mitigation Plans in 
Design Document) 

The largest risk associated with our project was the nature 
of it happening in the water. This presented a high probability 
of us damaging various electronic components. In order to 
mitigate this, we did intensive research on waterproofing 
techniques, including various tapes, liquid latex, silicone 
caulk, and more. We also opted for pre-waterproof 
components when possible, otherwise using a variety of 
methods to waterproof components ourselves. Despite these 
efforts, both our camera and camera cable sustained damage a 
number of times throughout the process. We anticipated this, 
however, and preemptively reduced the strain this damage 
would cause to our project by opting for cheaper components, 
allowing us to purchase multiple initially so that we had 
replacements on hand. At no time in the process did we run 
out of a component due to it having been damaged by water. 

 
The second risk that we associated with our project was our 

underwater images not being high-resolution enough for our 
post-processing to be successful. In order to mitigate this, we 
prioritized having scaled down versions of our post-processing 
code completed early in the process. This allowed us to 
continually test, and have a baseline expectation for the 
results, anytime a modification was made that impacted image 
capture quality. Luckily, we were able to successfully 
waterproof the camera in such a way that allowed for clear 
enough imaging. 

 

IX.​ ETHICAL ISSUES 
   Reef rover attempts to improve coral ecosystem monitoring 
so that scientists have reliable and accurate data. 
Understanding when coral reefs are at risk and giving 
scientists more time to react has many positive effects. As 

mentioned earlier, coral reefs have attributes that are used in 
medicines to treat human diseases, improving public health. 
Coral reefs protect shorelines by taming waves, which 
increases public safety by protecting people from dangerous 
currents. As for public welfare, coral reefs protect marine 
ecosystems that are a major food source.  
 
   Coral reefs exist in oceans all over the world, and they are a 
major resource for countries who have reefs within their 
borders. For example, Mexico has many coral reefs, which 
protect the land from flooding. They estimate that for every 
1m of coral lost, 15,000 people will be at risk for flooding 
with annual damages of 452 million USD. Worldwide, coral 
reefs save 94 million USD in flooding damages annually. This 
phenomenon occurs because coral reefs reduce wave power by 
about 97%.  
 
   Coral reefs are a cornerstone of many cultures, allowing 
fishing to become a prominent occupation and source of food. 
Research has shown that every square kilometer of coral reef 
can provide between 5 and 10 tons of fish annually. This is a 
source of food and income for local communities, which has 
an estimated local economic benefit of 6.8 billion USD a year. 
In addition, 97% of these fishermen live in developing 
countries, meaning coral reefs are a major source of 
independence and survival for many people around the world. 
 
   Socially, coral reefs attract many tourists to the tropical 
coastlines. 350 million people travel to see coral reefs 
annually. Their beauty is unmatched, and this tourism also 
brings in billions of dollars in revenue [10]. 
 
   While Reef Rover aims to give scientists a resource to 
preserve these reefs for all of the ethical reasons listed above, 
we must ensure that we designed Reef Rover in a way that 
does not harm the reef or that Reef Rover can’t be easily used 
with ill intentions. We limited the size of the submersible so 
that it would have the smallest impact on the ocean life 
underwater. However, there are some improvements that could 
be made to limit the chance of accidental reef contact. For 
example, we could add sensors to the submersible to detect 
when it is within a certain distance of a coral and 
automatically stop the boat from moving towards it. Also, we 
could protect the software with passwords so that data cannot 
be tampered with.  
 
   Other future design considerations would be to use materials 
that are very durable so that parts do not contribute to ocean 
pollution. Additionally, more metrics should be determined to 
define what areas Reef Rover can be used for, and ensure that 
Reef Rover is not deployed in areas it is not intended for. If it 
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were to be deployed in an area where coral is too deep, for 
example, the data collected could be less accurate than 
desired, harming scientific research. Ultimately, misuse of 
Reef Rover could harm ocean life and, indirectly, humans by 
continuing to put coral reefs in jeopardy. Some ethical 
concepts that arise are accountability, if researchers deploy the 
device improperly and do not take responsibility for this 
misuse. Trust, if researchers misconstrue data collected by the 
device. Responsibility, if the device is not used in a moral or 
ethical manner. Bias, if certain reefs that are in a geographical 
region are not monitored because of political conflict or racial 
discrimination. Overall, Reef Rover’s mission is to combat the 
effects of climate change on coral reef ecosystems, but there 
are critical ethical considerations that need to be taken into 
consideration for scaling up this device. 

X.​ RELATED WORK 
There is a move to use robots to help scientists monitor and 

understand coral reef ecosystems. In the article “A systematic 
review of robotic efficacy in coral reef monitoring techniques, 
Marine Pollution Bulletin,” many types of robots are discussed 
including underwater vehicles (UAVs), and aerial robots. 
Aerial robots take photos from satellites to detect bleaching. 
UAVs are newer technology, and the category that Reef Rover 
falls into. There are three categories of UAV: the ROV, AUV, 
and HUV. ROVs are remotely operated vehicles, which is 
what Reef Rover is. They are medium sized robots that are 
manually launched by scientists. AUVs are autonomous 
underwater vehicles that are deployed and collect data on their 
own, usually on the ocean floor. These robots have complex 
algorithms that change the robots motion and can even use 
sound in the environment to guide themselves.HUVs, or 
hybrid underwater vehicles, are a combination of the two. 
Reef rover will be a ROV. Some of our use case requirements 
have been inspired by a robot and algorithm that detected 
coral only, with an 89% accuracy, and a battery life of 2 hours. 

 

XI.​ SUMMARY 
   Reef Rover is a laptop controlled water robot that features an 
above water boat design with a submersible sensing and 
camera unit connected to the boat. Our design uses image 
recombination and machine learning to classify surveyed areas 
into different levels of coral health in order to help researchers 
monitor levels of coral bleaching over time, which is an 
important indicator of overall ocean health. Reef Rover 
provides a video livestream and real time temperature data, 
and map generation to the user with low latency. There were a 
few areas where Reef Rover could have improved, including 
implementing a higher resolution camera, a remote control 
with more movement precision, and a backend software 
connection between the live stream and map generation 
algorithm. Moreover, our classification accuracy was about 

5% lower than desired. Due to limited image data and time 
constraints, we were unable to improve this to 90%, however 
with more data points and more time to evaluate the 
boundaries between classifications, we could increase our 
accuracy to 90%. 
 
   Additionally, Reef Rover is non invasive to the ocean 
environment and does not require training divers or potentially 
putting humans at risk due to the nature of underwater work. 
Through image recombination and classification, scientists 
will be able to extract consistent data using the same metrics 
across different areas, something that is key to this area of 
research. They will also be able to track changes in the area 
over time more easily. Overall, Reef Rover provides scientists 
with a conveniently sized and durable opportunity to monitor 
coral reefs without expending the resources needed to send 
human divers, making research more accessible.  
 
   Some things that we learned going through the design 
process was that it is important to get the end to end product 
working as fast as possible, while making sure subsystems 
worked well. We ran into difficulties with integrating our 
stepper motor into the Arduino cloud and moving all our 
components onto one Arduino board. We should have 
accounted for more integration time and left more time to 
assemble the boat and test in the water. The waterproofing was 
a continued challenge, and testing multiple ways of 
waterproofing early would have made testing in the water 
more successful. 
 
   There is a lot of future work to be done to scale this project 
up to a full ocean environment. For example, we would design 
and manufacture a more durable and waterproof boat body. 
Additionally, we could add sensors to the underwater camera 
to detect how far away from a coral it is and prevent the user 
from getting too close. Lastly, we could make Reef Rover 
more autonomous, like others on the market, so that it could 
survey an area defined by scientists on its own without human 
control. Overall, Reef Rover gives scientists a powerful tool 
for coral reef monitoring, but there is more to be done for the 
future ocean use. 

GLOSSARY OF ACRONYMS 
GPIO – General-Purpose Input/Output 
KNN – K-Nearest Neighbors 
ML – Machine Learning 
RPi – Raspberry Pi  
Pi - Raspberry Pi 
Cloud - Arduino Cloud 
ROV - Remotely Operated Vehicle 
AUV - Autonomous Underwater Vehicle 
HUV - Hybrid Underwater Vehicle 
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UAV - Underwater Vehicle 
PPI - Pixels Per Inch 
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