
DanCe-V
Team C2: Danny Cui, Rex Kim, Akul Singh

18-500 Capstone Design, Spring 2025
Electrical and Computer Engineering Department

Carnegie Mellon University

System Architecture

Product Pitch
With the rise of short, trendy dance challenges on TikTok and Instagram Reels,

casual users need a simple, fun, and accessible way to practice these dances without
expensive motion capture setups. Our goal this semester was to develop a Unity-based
dance coaching tool that uses only a webcam and a computer, making dance learning
more engaging and approachable to a wider audience that may not have the time or
resources to dedicate to serious dance instruction. Our solution: an intuitive tool for casual
dancers who want immediate, real-time feedback on their movements. The application
focuses on providing accurate, real-time guidance while maintaining the playful and
creative spirit that drives viral dance content.

The important use-case requirements were real-time performance, accurate pose
tracking, clear user feedback, and intuitive 3D visualization. To meet these needs, we
engineered a system that extracts 2D pose landmarks from MediaPipe, maps them into 3D
avatar motion in Unity, and provides real-time scoring and feedback. Developing this
system required overcoming significant technical challenges: implementing and testing
multiple comparison algorithms (Dynamic Time Warping, Euclidean distance, and Cosine
similarity), recreating realistic 3D humanoid movements from noisy 2D inputs, and
maintaining low latency for real-time interaction.

On the Unity side, we developed a complete user interface that includes a
scoreboard, a main menu, and a reference video selection screen. Users select a reference
dance video (.mp4), which is then sent to the Python backend for landmark extraction and
comparison processing. After analysis, Python returns results such as matching scores and
pose deviation feedback to Unity, where it is displayed in real time alongside the reference
and user avatars.

The avatars in Unity are rigged 3D humanoid models driven by pose landmark data.
We employed physics-based movement using inverse kinematics, joint physics, lerps (linear
interpolation), and quaternions to model realistic joint rotations and transitions. Special
attention was given to depth modeling, with mathematical conversions applied to
reconstruct 3D poses from 2D MediaPipe landmarks. Depth estimation techniques were
implemented to infer the missing z-axis data for more natural movement and improved
accuracy in avatar posture.

The backend comparison engine, implemented in Python, underwent several
algorithms for flexibility and testing. It mainly consists of a FastDTW algorithm with a sliding
window approach for detecting time sequence alignments as well as timing differences
between the reference video and the live user webcam footage

https://course.ece.cmu.edu/~ece
500/projects/s25-teamc2/

System Description

System Evaluation

Conclusions & Additional Information

DanCe-V employs a three-layer architecture consisting of:
1. Data Acquisition Layer: Captures and processes raw video data.
2. Analysis Layer: Performs comparative analysis between user and reference

movements.
3. Presentation Layer: Delivers feedback through visual representations and reports

The complete system operates through the following sequence of operations: 1.
The user selects a reference dance video from the library or uploads their own. 2. If new,
the reference video is processed through OpenCV and MediaPipe to extract landmark
data. 3. When practice begins, the user's webcam activates and begins processing their
movements in real-time. 4. Normalized pose data from both sources is compared using
the single-frame algorithm. 5. Real-time feedback is provided through the Unity
visualization. 6. Throughout the session, movement data is recorded for post-session
analysis. 7. Upon completion, the multi-frame DTW analysis runs, generating the detailed
feedback report. 8. Results are stored in the user's profile to track long term progress.

This architecture enables DanCe-V to provide both immediate guidance during
practice and deeper insights afterward, creating a comprehensive learning experience that
approaches the benefits of personal instruction while requiring only standard consumer
hardware.

Example of User Interface

A two-pronged approach was utilized when evaluating the system to ensure that it
met both design specifications as well as use-case requirements. For the design
specifications, we focused on testing the UDP packet transmission rate as well as the Unity
FPS during operation.

Regarding the use-case requirements, the system was tested comprehensively for
both false positive and false negative feedback. In addition, users were asked to learn
unfamiliar dances on the system, which helped us verify the usability aspect of the product.

Our system successfully achieved the primary goals we set at the beginning of the
semester: to create an accessible, intuitive, and real-time dance coaching tool using only a
webcam and a computer. Through careful algorithm selection, system optimization, and
extensive testing, we met all major performance requirements, including processing speed,
tracking fidelity, scoring accuracy, and real-time feedback responsiveness.

There are several promising directions for further development. Future work could
focus on optimizing a full-body physics model to more accurately recreate natural human
motion in the avatar, especially for complex and dynamic dances. Enhancing the robustness
of depth estimation would allow better recognition of intricate forward and backward
movements. Additional feedback types could be implemented by utilizing custom mesh
deformations or visual cues to highlight incorrect body parts in real time. Expanding the
system to support mobile platforms would make dance training even more accessible.
Multiplayer or collaborative dance modes could also be introduced to enhance engagement.
Together, these improvements would significantly expand the system’s versatility and create
new opportunities for both casual and serious dancers.

Tradeoff RationaleTechnique UsedDesign Aspect

Prioritizes smooth transitions
over exact pose replication to
reduce jitter from noisy input

Gradual interpolation of
joint positions using
Linear Interpolation (Lerp)

Positional Smoothing

Maintains fluid joint
orientation while sacrificing
some responsiveness to
sudden pose shifts

Smooth blending of
directional rotations
using Quaternions
(rotations in 3D),
Spherical Interpolation
(Slerp)

Rotational Stability

Ensures realistic body
alignment but requires careful
directional vector modeling.
Provides consistent root and
torso orientation, but loses
global frame-of-reference
awareness

Manual computation of
joint-based body axes
based on CV landmarks

Anatomical Direction

Smooths out rotational jitter
but dampens finer user-
intended motion, uses inverse
kinematics for natural joint
articulation

Weighted blending
between computed,
tracked rotations using
Forward Kinematics (FK)
and Inverse Kinematics
(IK)

Blend Control (FK/IK)

Design Trade-Offs (Unity Engine):

