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➔ The problem: Real time instruction is costly and inaccessible, especially for learning casual 
dances from social media 

➔ Our solution: A virtual, AI powered dance coach that uses your webcam to analyze your 
moves and provide feedback as you follow along with any dance video

➔ Tracks and scores dance moves using computer vision tools
➔ Uses a webcam for motion tracking and 3D modeling
➔ Provides an accessible and inexpensive learning tool for casual dancers

Use Case



Use Case Requirements

Hardware 
Accessibility

Input Video
Compatibility



Computer Vision Requirements

Processing 
speed

Feedback on a 3 minute dance should take no more than 1 
minute to generate on consumer grade hardware (Apple M3)

Depth Full 3-dimensional movement reconstruction from 2D video 

Granularity >=20 key body points tracked

Accuracy <=10cm for limb position tracking

UDP-Based 
Networking CV packet transmission rate of ≥ 20 packets per second



Feedback Requirements

Score Accuracy Per-limb accuracy scores within ±10%

Timing Tracking Timing deviation measured in ±50ms increments

3D Modeled Avatar 
Representation

Generate corrections for moves with >20% deviation 
from reference input video

Improvement Metrics Track improvement across 5+ key metrics

Progress Reporting Generate progress reports after every 5 attempts

Performance 
Benchmarking Maintain >= 30 FPS in Unity



1. Motion Capture: 

- OpenCV + AI-Driven LandMark Pose Detection

2. Reference Comparison: 

- Unity based 3D comparison
- Dynamic Time Warping algorithm

3. Feedback: 

- Joint-specific + Movement pattern heuristics
- 3D Avatar generation

Solution Approach



System Specification/Block Diagram
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Socket



Webcam 
Footage

Reference 
Video

MediaPipe LandMark 
Pose Detection

What: 
- OpenCV input processing
- MediaPipe LandMark Pose Detection

Why: 
- Accessibility: No need for multiple cameras
- Accuracy: Tried and true libraries 

Implementation Plan - Computer Vision



Implementation Plan - 3D Comparison Engine

What: 
- Cosine Similarity + Procrustes Analysis

Why: 
- Normalizes spatial variance in pose 

keypoints, enabling rotation/scale-invariant 
comparison 

What: 
- Dynamic Time Warping Algorithm

Why: 
- Optimizes temporal alignment between 

movement sequences, accommodating 
non-linear timing variations and preserving 
sequential pose correspondences Unity 3D Model 

Reconstruction

UDP Socket



Computer Vision: 

Test, Verification and Validation

Processing speed Input ~3 minute dances on Apple M3 laptop

Depth Input complex dances that heavily involve 3D movement

Granularity Count # of body points tracked consistently for the entire duration of the 
video input with at least 5 different human targets

Accuracy Cross compare processed data with input for <= 10cm discrepancy

UDP-Based 
Networking Utilize Python packet sending and timer to ensure sufficient throughput



Feedback:

Test, Verification and Validation

Score Accuracy Compare output scores with at 3 preset dance videos to remain within ±10% 
deviation from the reference movements

3D Modeled Avatar 
Representation

Test dance sequence with known deviation quantities to verify system 
generates movement corrections for >20% pose deviations

Progress 
Reporting

Ensure that a detailed progress report is generated after every 5 attempts, 
summarizing performance trends

Performance 
Benchmarking Measure Unity frame rate (≥ 30 FPS) while providing 3D avatar feedback



Project Management


