
 6 IMPLEMENTATION PLAN

 8 PROJECT MANAGEMENT

 3 QUANTITATIVE DESIGN REQUIREMENTS

 4 SOLUTION APPROACH

 5 SYSTEM SPECIFICATION / BLOCK DIAGRAM

 1 USE CASE

 2 USE CASE REQUIREMENTS

Content

 7 TEST, VERIFICATION, AND VALIDATION

➔ The problem: Real time instruction is costly and inaccessible, especially for learning casual
dances from social media

➔ Our solution: A virtual, AI powered dance coach that uses your webcam to analyze your
moves and provide feedback as you follow along with any dance video

➔ Tracks and scores dance moves using computer vision tools
➔ Uses a webcam for motion tracking and 3D modeling
➔ Provides an accessible and inexpensive learning tool for casual dancers

Use Case

Use Case Requirements

Hardware
Accessibility

Input Video
Compatibility

Computer Vision Requirements

Processing
speed

Feedback on a 3 minute dance should take no more than 1
minute to generate on consumer grade hardware (Apple M3)

Depth Full 3-dimensional movement reconstruction from 2D video

Granularity >=20 key body points tracked

Accuracy <=10cm for limb position tracking

UDP-Based
Networking CV packet transmission rate of ≥ 20 packets per second

Feedback Requirements

Score Accuracy Per-limb accuracy scores within ±10%

Timing Tracking Timing deviation measured in ±50ms increments

3D Modeled Avatar
Representation

Generate corrections for moves with >20% deviation
from reference input video

Improvement Metrics Track improvement across 5+ key metrics

Progress Reporting Generate progress reports after every 5 attempts

Performance
Benchmarking Maintain >= 30 FPS in Unity

1. Motion Capture:

- OpenCV + AI-Driven LandMark Pose Detection

2. Reference Comparison:

- Unity based 3D comparison
- Dynamic Time Warping algorithm

3. Feedback:

- Joint-specific + Movement pattern heuristics
- 3D Avatar generation

Solution Approach

System Specification/Block Diagram

Webcam
Footage

Reference
Video

Data Processing

Inputs
OpenCV

Input Parsing

MediaPipe
LandMark Pose

Classification

Comparison Engine

Unity 3D Model
Construction

Comparison
Algorithm

Output Generation

Unity Avatar Generation Feedback Report
Generation

UDP
Socket

Webcam
Footage

Reference
Video

MediaPipe LandMark
Pose Detection

What:
- OpenCV input processing
- MediaPipe LandMark Pose Detection

Why:
- Accessibility: No need for multiple cameras
- Accuracy: Tried and true libraries

Implementation Plan - Computer Vision

Implementation Plan - 3D Comparison Engine

What:
- Cosine Similarity + Procrustes Analysis

Why:
- Normalizes spatial variance in pose

keypoints, enabling rotation/scale-invariant
comparison

What:
- Dynamic Time Warping Algorithm

Why:
- Optimizes temporal alignment between

movement sequences, accommodating
non-linear timing variations and preserving
sequential pose correspondences Unity 3D Model

Reconstruction

UDP Socket

Computer Vision:

Test, Verification and Validation

Processing speed Input ~3 minute dances on Apple M3 laptop

Depth Input complex dances that heavily involve 3D movement

Granularity Count # of body points tracked consistently for the entire duration of the
video input with at least 5 different human targets

Accuracy Cross compare processed data with input for <= 10cm discrepancy

UDP-Based
Networking Utilize Python packet sending and timer to ensure sufficient throughput

Feedback:

Test, Verification and Validation

Score Accuracy Compare output scores with at 3 preset dance videos to remain within ±10%
deviation from the reference movements

3D Modeled Avatar
Representation

Test dance sequence with known deviation quantities to verify system
generates movement corrections for >20% pose deviations

Progress
Reporting

Ensure that a detailed progress report is generated after every 5 attempts,
summarizing performance trends

Performance
Benchmarking Measure Unity frame rate (≥ 30 FPS) while providing 3D avatar feedback

Project Management

