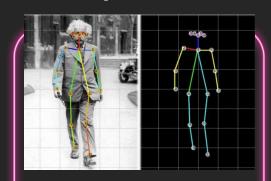


Contents


- 1 USE CASE
- **2 USE CASE REQUIREMENTS**
- **3 TECHNICAL CHALLENGES**
- **4 SOLUTION APPROACH**
- 5 TESTING, VERIFICATION, AND METRICS
- 6 TASKS AND DIVISION OF LABOR
- 7 SCHEDULE

Use Case

- → Our solution: Real-time AI pose detection and haptic feedback
- → Tracks and scores dance moves using AI-powered computer vision
- → Uses a webcam instead of physical controllers for motion tracking
- → Haptic feedback support to improve player immersion
- → Provides an accessible and inexpensive rhythm-based dance game experience

Components and Features

Computer Vision

ECE Concentration:

Signals and Systems

Game Design

ECE Concentration:

Software Systems

Haptic Feedback

ECE Concentration:

Circuits

Computer Vision Requirements

Latency

- Average input latency for non-professional gamers is 114.33 ms¹
- Therefore, aim for < 100 ms latency

Accuracy:

- Accuracy of 90% may make game frustrating for the user
- Aim for ≥ 95% classification accuracy

Detection:

- Detect and discern between 5-8 moves individually
- Provide outputs if the user is Off, Close, or Perfect

¹Banatt, Eryk. "Input Latency Detection in Expert-Level Gamers." Yale University, 2017.

Game Requirements

Functionality

- Take processed data from camera and reflect CV outputs in game UI

UI/User Experience

- Select from 3 different difficulty levels, where harder difficulties would include more complicated songs/beats/rhythms to follow
- View detailed performance statistics on game completion

Visual/Audio Stimuli

- Standard movie codec is ~24 FPS, so aim for at least 30 FPS on Apple M3
- Elevate user experience with smooth tracking and 3D graphics

Haptic Feedback Requirements

Feedback

- Incorporate different kinds of feedback with vibration motors
- Quick bursts for mistakes, subtle pulses for correct moves

Latency

- Target ≤ 50 ms to keep haptic feedback in sync with the game outputs
- Less than the 100 ms latency for the CV processing, but want to prioritize an immersive experience for the user with haptic feedback

Weight

- Aim for ≤ 50g, as standard fitness watches in the current market fall in this range

Benefits Beyond Requirements

Physical and Mental Health Benefits

- Dancing helps 98% of people to relax from their daily responsibilities¹
- Provides a unique and fun experience to exercise and improve overall health

Low Barrier to Entry

- Can be played anywhere without any expensive cameras or gaming setups

Diversity in Music/Cultures

 Will include music from different cultures/backgrounds, appealing to a large variety of individuals

¹Marosz, Szymon & Borkowska, Aleksandra & Borkowska, Katarzyna & Krysiak, Patrycja & Kuligowska, Monika & Piecewicz-Szczęsna, Halina. (2022). The impact of dance on human health. Journal of Education, Health and Sport. 12. 297-304. 10.12775/JEHS.2022.12.11.039.

Technical Challenges

Input Latency < 100 ms

CV Accuracy of At Least 95%

Unity Game Design and Intuitive UI

Seamless
Integration of
Components

Solution Approach

CV Processing in Python Physical dance Extract x,v Compare Generate moves from **OpenCV** coordinates keypoints to JSON with human recorded reads of player w/ predefined game frames by computer MediaPipe rules information camera Unity Game Design in C# Haptic Feedback with ESP32 in C++ Generate Activate Processing Reflects player position audio and Receives vibration vibrate signal onto avatar and adjust feedback **JSON** from Unity motors on score as needed signals player's hand via WiFi

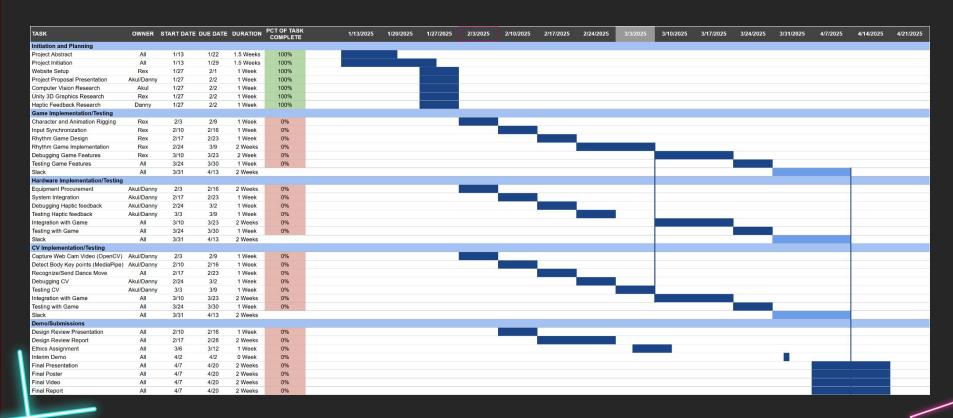
Testing, Verification, and Metrics

Metric	Test Plan
Input/Output Latency	Time the input latency to make sure CV latency < 100ms and haptic feedback latency < 50ms
Gameplay Smoothness	Use FPS display to ensure average FPS ≥ 30 during 10 minute long gameplay
Computer Vision Accuracy	Run 25+ test examples and check both false positives/negatives to see if we reach goal of 95% accuracy
Weight of Haptic Feedback Device	Use a scale to ensure weight ≤ 50g, and collect user feedback to evaluate its comfort when worn while playing
Intensity of Haptic Feedback Device	Ask 15+ players to try wearing the device while playing the game and share feedback about the intensity of the haptic feedback
Gameplay Usability	Ask 15+ players to try the game and ask for gameplay feedback

Tasks and Division of Labor

Rex

- Game Design
- Unity and Game Implementation
- Computer Vision (Interfacing with Game)
- Overall Test/Debug


Akul

- Game Design
- Haptic Feedback
 Integration
- Computer Vision
 (Player Detection,
 Recognizing Moves)
- Overall Test/Debug

Danny

- Game Design
- Haptic Feedback Integration
- Computer Vision (Mapping Key Points, Optimization)
- Overall Test/Debug

Schedule

