Use Case: Why sorting robots?

The Problem:

- Society processes lots of objects
- Sorting is time consuming and mundane

Use case requirement:

Continuous and synchronous package sorting

Solution Approach

Robot arm with conveyor belt vision:

- Modular
- Galable
- Synchronous actions lead to high efficiency
- Robot arms will accomplish more sophisticated tasks in the future

System Design Requirements

System specification

Geometry Layout

Project Management

Progress

- Robot 3d printed
- Planned kinematic flow
- Pseudo code algorithms
- Ordered camera and treadmill

Next Steps

2 weeks

- Wiring electronics MTQr localizing MR
- □ Kinematics Algo RS

4 weeks

- Movement testLow latency dataMR
- □ Sorting moves RS

6 weeks

Testing components -> increased throughput MT, RS, MR

Testing and validation

Metrics

- □ Low miss rate %
- □ Action synchronous at +1 mph
- □ No damage to packages

If synchronous sorting not possible

- Introduce conveyor belt stop and start functionality
- Laser detection

If we have trouble picking up boxes

Introduce sideways boxheight camera

