# Final Presentation

StrainLess <3

#### **Use Case/Application**

Goal: reduce neck strain and back pain due to poor posture, reduce eye strain

| Overall System                                                                                    | Posture tracking                                                                           | Eye strain mitigation                                      | Browser extension                                                                           |
|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Prompts a detectable<br>change to eye strain or<br>posture measures in <1<br>minute               | Neck angle and weight<br>distribution correctly<br>measured with >95%<br>accuracy          | Blink rate correctly<br>measured within +/- 1<br>blink/min | User can see their<br>posture/blink behavior<br>later on                                    |
| Latency <1 min<br>Alerts for all measures<br>have >95% true-positive,<br><5% false-positive rates | Not restrictive of user<br>motion/comfort while<br>working 1+ hrs.<br>Head components <75g | Works in different ambient<br>lighting conditions          | Runs in background on<br>user opening Chrome<br>without requiring user<br>to open extension |
| Functional for duration of<br>8hrs without charging                                               | 100-300lbs supported                                                                       |                                                            | Notifications not more<br>intrusive than user<br>selects                                    |

# **Design Requirements**

| Head module                                                                | Seat module                                                                                                  | Browser Extension                                            |  |  |  |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--|--|--|
| Power:<br>- Battery size < 6 sq. in.                                       | Main MCU:<br>- Compatible with/ onboard<br>ADC                                                               | <mark>User is able to view a summary of</mark><br>their data |  |  |  |
| MCU<br>- Bluetooth 5.0 compatible                                          | <ul> <li>Can process/ analyze inputs</li> <li>Compatible with SPI or I2C</li> <li>Physics eth 5.0</li> </ul> | User is able to hear and/or see alert                        |  |  |  |
| <ul> <li>Battery amp-nour/avg.</li> <li>current draw &gt;= 8 hr</li> </ul> | - Bluetooth 5.0                                                                                              | intrusiveness of system                                      |  |  |  |
| Head angle/position<br>- Gyro range: 0 → 200 d/s                           | <ul> <li>O-300 lb min weight range</li> <li>Some way of connecting to<br/>MCU</li> </ul>                     | Camera supports at least 30fps for<br>blink detection        |  |  |  |
| Mounting - Unobtrusive to user - Stable - Does not overheat                | <ul> <li>Detect &lt; 0.5 lb shift for<br/>analysis</li> <li>Sampling rate: 1 uS</li> </ul>                   | CV algorithm is able to detect blinks<br>in dim conditions   |  |  |  |

Total Weight < 75g



# **Solution Approach**



**Browser Extension View** 



**Gyroscope on Visor** 



Mat for Chair

#### **Complete Solution**



## **Complete Solution (cont.)**

• Instantaneous feedback vs averaging data



Pressure mat individual sensor data

#### **Test, Verification, Validation**

| Test                       | Procedure                                                                                                                                                                                                     | Passing Test                                       | Results                                                                                                           |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Neck angle<br>accuracy     | Record user from side for 10-60min with<br>current angle displayed on laptop in video,<br>compare calculated angles with manually<br>measured angles using Kinovea software in<br>~20 frames throughout video | RMS error < 5<br>degrees                           | 10 min: Passes (RMS =<br>3.62 degrees, max diff<br>= -6.55 degrees)<br>30 min: In Progress<br>60 min: In Progress |
| System 8hr<br>battery life | Fully charge LiPo battery, connect ESP32 and<br>RPi, leave system running (continually sending<br>data) for 8hrs.                                                                                             | LiPo + seat batteries<br>do not drop below<br>3.3V | Seat battery: Passes<br>500 mAh/10 ma per<br>hour<br>LiPo: In Progress                                            |
| Browser<br>Extension<br>UI | Exhibit poor posture via sensors for > 1 min,<br>measure latency between time of poor<br>posture and time of alert.                                                                                           | Latency in seconds.<br>Should be < 1 minute.       | Pressure mat:<br>Neck angle:<br>Blink rate:                                                                       |

### Test, Verification, Validation (cont.)

| Test                      | Procedure                                                                                                                                                       | Passing Test                                                                                                              | Results                                                                               |  |  |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--|--|
| Posture<br>Mat<br>Comfort | Google form regarding whether they felt<br>any discomfort, were impeded by the mat,<br>and perceived accuracy of alert (0 is worst,<br>10 is best)              | Out of each category<br>>7 rating                                                                                         | Impeded: In Progress<br>Discomfort: In Progress                                       |  |  |
| Blink rate                | Compare number of blinks detected vs.<br>manual count over 1 min. Vary lighting<br>from well-lit to dim (3 diff. conditions).                                   | Counts should be<br>within 1 blink for all<br>conditions.                                                                 | Dim: In Progress<br>Average: In Progress<br>Bright: In Progress                       |  |  |
| Posture<br>accuracy       | Record user from side and front for 10<br>minutes (x10 people) and 1 hour (1 person),<br>compare the posture deviations being sent<br>with those from the video | When a visible lean or<br>other incorrect<br>posture is detected on<br>the video, >95% of<br>visible leans are<br>alerted | 10 min: Passes (False<br>positive rate of 3% when<br>averaged)<br>60 min: In Progress |  |  |

# **Design Tradeoffs**

| Neck System                  | <ul> <li>Distribution of angle processing workloads across the two MCUs</li> </ul>                                                                                                                                                                                                                                        |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sitting<br>Posture<br>System | <ul> <li>Battery Powered Sensors vs. In-Wall Power</li> <li>Protoboard</li> <li>1 ADC + 16:1 MUX vs 4 ADC - latency between switching between I2C addresses and switching MUX channels</li> <li>Pressure sensor location - accuracy on lean direction with 1 tester vs overall alert accuracy with all testers</li> </ul> |
| Blink rate<br>system         | <ul> <li>Running script locally vs on Raspi vs on web app/browser extension</li> </ul>                                                                                                                                                                                                                                    |
| Browser<br>extension         | <ul> <li>Liberal use of permission granting vs functionality</li> </ul>                                                                                                                                                                                                                                                   |

## **Challenges/Lessons Learned**

- Pi Web Server Hosting and Integration
- Early integration of small portions of project
- Black-boxed library code vs. tunable/modifiable algorithms
- Not overfitting algorithms for data analysis
- Testing on user setup vs. breadboarding
- Security issues with third-party code

|                     | Design Implementation & Integration     |      |                                    |     |                   | n                  | Testing/ Validation                 |                                          |                                | Improving<br>Design /<br>MVP |                                    |       |
|---------------------|-----------------------------------------|------|------------------------------------|-----|-------------------|--------------------|-------------------------------------|------------------------------------------|--------------------------------|------------------------------|------------------------------------|-------|
| Dates/<br>Members   | 2/10                                    | 2/16 | 2/24                               | 3/1 | 3/10              | 3/17               | 3/24                                | 3/31                                     | 4/7                            | 4/14                         | 4/21                               | 4/28  |
| illy                | Cap design                              |      |                                    |     | Sensor testing Ca |                    | Cap ass                             | assembly + integration with<br>extension |                                |                              | Testing + tuning +<br>benchmarking |       |
| -111 y              |                                         |      |                                    | BLE |                   |                    | Angle c                             | alculatic                                | on/filterir                    | ng                           |                                    |       |
| ora                 |                                         | C    | <b>V</b>                           |     |                   |                    | Rasp<br>Pi/Extension<br>Integration | n                                        |                                | Neck a<br>graph + t          | ngle<br>esting                     |       |
|                     | Extension Creation Aestheti             |      |                                    |     |                   |                    |                                     | esthetics                                |                                |                              |                                    |       |
| aitlyn              | RasPi ServerSensor InteHostingwith Exte |      |                                    |     |                   | egration<br>ension |                                     |                                          | ting + tuning +<br>enchmarking |                              |                                    |       |
| Cartiyii            |                                         |      | Sensor Mat<br>Creation + prototype |     |                   |                    | Sensor tuning and averaging         |                                          |                                |                              |                                    |       |
| ¯eam<br>⁄lilestones |                                         |      |                                    |     |                   |                    | l                                   | Interim<br>Demo                          |                                |                              | Final<br>Present                   | ation |