
Use Case / Application

Original GameBoy hardware is not in production

Game developers needing an accurate hardware
environment for testing and optimization

Gamers looking to play GameBoy ROMs on modern
hardware

Developers interested in FPGA-based emulation of
Gaming Systems

Play Tetris and Dr. Mario

Motivation

MVP

Use Case

4.19MHz CPU Clock Speed

CPU Accuracy

60 Frames per second

Subsystem Constraint

CPU Synthesize CPU with Clock Speed 4.19MHz

CPU Cycle Accurate

Graphics (PPU) Frame Output Delay < 16.7 ms

Graphics (PPU) 100% palette mapping accuracy

Graphics (PPU)
Frame Rate Consistency:

Each scanline drawn in 456 cycles
Each frame lasts 70224 cycles

Graphics (PPU)
Sprite X/Y coords within ±1 pixel 90% of the time
Sprite priority and layering with > 90% correctness

Design Requirements [1]
USE CASE

REQUIREMENTS
DESIGN REQUIREMENTS

Smooth gameplay, minimal
visual lag

Subsystem Constraint

Audio > 90% Wave Frequency Accuracy

Audio Bit-perfect Wave RAM (Channel 3)

Audio
Pitch & Volume check:

Volume envelope updates within 1 frame
Pitch sweeps change every 7.8ms step

Audio Register Write-to-Output Latency < 10ms

Design Requirements [2]
USE CASE

REQUIREMENTS

DESIGN REQUIREMENTS

Minimal audio lags / glitches

Minimal audio stalling

32ms to 48ms Input Lag

Customizable, Upgradable

Controller Button press processed within 30 ms

Full System Highly Modular Design

Complete System Architecture

Solution Approach - FPGA, Memory, Controller

114k LEs
432 KB Block RAM + 2MB SRAM + 128MB SDRAM
Support for USB 2.0, VGA, Audio CODEC
Familiar Altera/Intel toolchain

USB 2.0
Supported by other emulators

Memory Mapping
Memory Controller
Concurrent Reads &
Writes
Block RAM
SRAM / SDRAM

Solution Approach - CPU, APU

Intel 8080-like Sharp
CPU
Cycle accurate
Complex Memory
instructions
Interrupt Handling

4 Channels + mixer
Volume Control
FPGA CODEC to output
sound

Solution Approach - PPU

Handles backgrounds, windows, and
sprites
Video RAM stores tiles & maps, OAM
Table stores Sprite data
Renders the screen one line at a time
4 Modes: Sprite Searching, Drawing, H-
blanking, V-blanking
VGA to display screen

Tileset referenced: https://www.spritefusion.com/tilesets/four-seasons-platformer

Implementation Flow

Metric / Value Test Method Input Success Output

Clock Speed Synthesis FPGA Clock CPU operates at 4.19MHz

CPU Accuracy Simulation Intel-8080 CPU tests Cycle accurate

Frame Rate Simulation Custom Test ROMs Frame Output Delay < 16.7 ms

Palette Mapping Simulation Custom Test ROMs 100% palette mapping accuracy

Frame Rate
Consistency

Simulation Custom Test ROMs
Each scanline drawn in 456 cycles
Each frame lasts 70224 cycles

Sprite Position
Accuracy

Simulation Custom Test ROMs
Sprite X/Y coords within ±1 pixel 90% of the time
Sprite priority and layering with > 90% correctness

Qualitative Checks Custom Script Simulation Dump Matches Software Emulator Output with > 80% accuracy

Testing, Verification, Metrics [1]

Metric / Value Test Method Input Success Output

Wave Frequency Oscilloscope Set NR13/NR14 or NR33/NR34 Wave frequency matches control register

Wave RAM
Accuracy

Oscilloscope /
Logic Analyzer

Custom Input to Wave RAM Bit-perfect Wave RAM (Channel 3)

Pitch Check Oscilloscope Set NR10, NR13/NR14 Pitch sweeps change every 7.8ms step

Volume Check Oscilloscope Set NR12/NR22, trigger NR14 Volume envelope updates within 1 frame

Audio Output
Latency

Simulation Write NR14, measure output time Register Write-to-Output Latency < 10ms

Controller Input
Lag

Video
Recording

Recorded videos of Button presses
Control register reflects correct button
press within 30ms

Testing, Verification, Metrics [2]

CPU Continuous implementation & testing; incremental instruction set validation.

Pixel Processing
Unit (PPU) Multi-stage rendering tests; simulation unit testing with assertions & custom testbenches.

Audio Processing
Unit (APU)

Verify each channel using oscilloscope & logic analyzer.
Backup: Output audio directly to GPIO pins if the codec fails.

Memory Use BRAM for Game Boy memory, SRAM/SDRAM for ROM storage.
Backup: Store everything in BRAM if needed.

Controller / Input USB 2.0 NES controllers.
Backup: Custom controller mapped to GPIO pins.

Integration Multi-step integration, rigorous system-wide testing, debugging logs for failure analysis.

Misc Workarounds for missing documentation; reference open-source software emulators.

Risk Mitigation

Schedule

