B5: Enigma18 | Amelia, Nancy, Tanisha

APPLICATION

- Modernized implementation of WWII Enigma machine
- FPGA and custom PCB

USE CASE

- Educate about **cryptography** through hands-on encryption and decryption
- For use in museums and classrooms (compact, interactive, open-source)

Use-Case Requirements

Rotors

$\textbf{Use-Case} \rightarrow \textbf{Design Requirements}$

USE-CASE	DESIGN REQUIREMENT
I/O to represent all 26 letters of alphabet	• 26 LEDs and 26 keys
Compact size to be held in two hands	• Fit on DE10-Standard (66mm x 130 mm) header pins
100% of computation and interfacing should be done on FPGA	 Must use <= 36 GPIO pins (not including GND, 3.3V, 5V)
Power consumption only requires 1 standard wall outlet	 FPGA 12V DC power adapter All peripherals operate at 3.3V from GPIO pins

System Specification Updates

- Altera DE-10 Standard FPGA
- 1 rotary encoder
- PS/2 Keyboard
- MicroSD card
- Custom housing

Welfare Considerations

- **GLOBAL**: Open-source, hands-on, and accessible to different backgrounds
- **CULTURAL**: Balance between highlighting technological achievement & acknowledging historical WWII implications
- **ECONOMIC**: Open-source RTL & sourced PCB domestically
- ENVIRONMENTAL: Repurposed keyboard & minimal custom casing

PCB Layout

- Redesigned PCB
- User-friendly
- Historically accurate layout
- Power/safety considerations (3V3 compatibility, wide traces)

PCB Testing, Verification, Validation

AREA	TEST METHOD	DESIGN REQUIREMENT	
PCB Design	Design Rule Check	Verified design meets manufacturing requirements with 0 errors	
	Electrical Rule Check	Verified power and ground connections with 0 errors	
PCB Fab	Continuity test	Continuity test on multimeter, ensure proper fabrication with 0 open circuits throughout board	
	Voltage measurement	Verified voltage levels at every connection for all LEDs, resistors and GPIO (rotary encoder, FPGA header, shift registers)	
	Trace Verification	Validated 100% of traces by powering PCB and validating output voltage levels against schematic (e.g. LED on, logical high)	

RTL Progress

Task	Status
Fully replicated Enigma encryption + verified with simulator	
Functional PS2 keyboard protocol implementation	
Basic I/O manipulation of rotor settings	
Rotor settings integrated with rotary encoder	
SPI protocol for seven segment display	
Shift register integration for lampboard	
Full integration + verification with custom PCB	

Final Solution Testing

Rotary Encoder Demonstration

Lampboard Demonstration

Final Solution with Housing

Isometric Front View

RTL Testing, Verification, Validation

- Online Enigma simulator as ground truth
- Passing test = 100% accurate encryption or peripheral output

Keyboard CPM	Encryption Accuracy
<= 100	100%
200-350	~60%

AREA	METHOD	DESIGN REQUIREMENT	
Synth	Peripheral unit tests	Lampboard: Lights up random sequence of 50 letters Keyboard: Type continuously at set BPM for 2 minutes	
	Integrated user tests	Test fully integrated product on 5 people (manipulating all inputs)	SOON
Sim	Constrained Random	Rotor logic: Input 500 randomized <u>plaintext</u> \rightarrow <u>ciphertext</u> characters 20 randomized Enigma settings	
	Tests	Keyboard: 20 randomized 200 inputs with matrix scanner algorithm	

Project Management

